GOVERNMENT OF JAMMU & KASHMIR FOREST, ECOLOGY AND ENVIRONMENT DEPARTMENT ### **NOTIFICATION** | Crinagar/lammu | th a | 2023 | |-----------------|------|------| | Srinagar/Jammu, | uie | 2023 | | S.O | :- In exercise of the powers conferred by the proviso to | |----------------|--| | Article 309 o | f the Constitution of India, the Lieutenant Governor of | | Union Territor | ry of Jammu & Kashmir is pleased to make the following | | rules, namely | :- | - 1. Short title and commencement - - i. These rules may be called the Jammu and Kashmir Wildlife Protection (Gazetted) Service Recruitment Rules, 2023. - ii. These shall come into force from the date these are published in the Government Gazette. - 2. Scope of the rules:- These rules shall apply to the appointments and promotions to all the posts included in the Jammu and Kashmir Wildlife Protection Service as detailed in the Schedule annexed to these rules. - 3. *Definitions:-* In these rules, unless there is anything repugnant in the subject or context: - iii. "Administrative Department" means the 'Department of Forest, Ecology and Environment' in the Civil Secretariat. - iv. "Cadre" means cadre of the service. - v. "Commission" means the Jammu and Kashmir Public Service Commission. - vi. "Government" means the Government of Jammu & Kashmir. - vii. "Head of the Department" means the Major Head of the Department holding the administrative control of the organization. - viii. "Member of the Service" means a person appointed to a post in the service under the provisions of these rules or the rules superseded by these rules. - ix. "Schedule" means the Schedule annexed to these rules. - x. "Selection Agency" means the agency constituted by the Government for making selection to a particular class of post, i.e., The Jammu and Kashmir Public Service Commission. - xi. "Service" means the Jammu and Kashmir Wildlife Protection (Gazetted) Service. - xii. "Promotion" means promotion from one class, category or grade to another class, category or grade in the service on the basis of Seniority, merit, work & conduct, efficiency and Integrity. - xiii. "UT" means the Union Territory of Jammu and Kashmir. - xiv. Words and expressions used in these rules but not defined shall have same meaning as are assigned to them in the Jammu & Kashmir Civil Services (Classification, Control & Appeal) Rules, 1956 read with S.O. 192 of 2020, dated: 17-06-2020. - 4. Constitution of Service:- (i) From the date of commencement of these rules there shall be constituted the Jammu and Kashmir Wildlife Protection (Gazetted) Service. - (ii) The Government may at the time of commencement of these rules appoint to the service any person who at the commencement of these rules is holding any post included in the cadre of the service. - 5. Strength and composition of the service:- - i. The authorised permanent and temporary strength of the cadre and the nature of the posts included therein shall be determined by the Government from time to time and shall at the initial constitution of the service under these rules, be such as specified in the Schedule-I annexured to these rules. - ii. The Government shall, at the interval of every five years or at such other intervals as may be necessary re-examine the strength and composition of the cadre of the service and make such alterations therein as it deems fit. - 6. Supersession of existing rules and orders:- All existing rules and orders relating to matters covered by these rules shall stand superseded but any action taken in pursuance of such rules and orders before the enforcement of these rules shall be deemed to have been taken under these rules. - 7. Cadre: The cadre of the service shall consist of such posts and such numbers of them as may be fixed for each of its classes from time to time by the Government. - 8. Qualifications and method of recruitment:- - i. No person shall be eligible for appointment or promotion to any class, category or grade in the service unless he is in possession of the qualifications as laid down in the Schedule-II and fulfils other requirements of the recruitment as provided in the rules and orders for the time being in force. - ii. Appointment to the service shall be made:- - a. by direct recruitment; - b. by promotion; and - c. partly by direct recruitment and partly by promotion in the ratio and in the manner as indicated against each post in the Schedule. - iii. In case no suitable departmental candidates are available for promotion, the posts shall be filled up by direct recruitment. - 9. Eligibility of In-service Candidates for direct recruitment:- A person already in Government service may apply for direct recruitment to a vacant post in any particular class or category in the service if he possesses the educational and other qualifications prescribed for recruitment to such class and category of post. - 10. Probation:- No person shall be eligible for confirmation as a member of service or class till he has been on probation in such service or class continuously or in aggregate for a period of two years; "Provided that nothing shall debar the Government from extending the period of probation of a probationer who has failed to acquire the prescribed qualification or to pass the prescribed test provided that the period shall in no case be more than two years". "Provided further that the Government may extend the period of the probation of a probationer for another two years under rules, if the probationer fails to meet the requirements or standards of the job". The confirmation in the service shall be regulated under the provisions of the Jammu and Kashmir Civil Service (Classification, Control and Appeal) Rules, 1956 read with S.O. 192 of 2020, dated: 17-06-2020. - 11. Reservation of appointments:- While making appointments, either by promotion or direct, reservation shall be provided to the eligible categories in accordance with the rules and orders issued from time to time for members of the Scheduled Castes, Backward Classes any other category or class of persons for whom such reservation may be made under orders of the Government. - 12. Discipline and conduct:- In regard to all matters governing the service conditions of the members of the service and their conduct and discipline, the provisions of the Jammu and Kashmir Civil Service (Classification, Control and Appeal) Rules, 1956 and other rules and orders in force at the time shall apply. - 13. Discipline and conduct:- In regard to all matters governing the service conditions of the members of the service and their conduct and discipline, the provisions of the Jammu and Kashmir Civil Service (Classification, Control and Appeal) Rules, 1956 and other rules and orders in force at the time shall apply. - 14. Seniority: - i. Seniority of the members of the service shall be regulated under the Jammu and Kashmir Civil Service (Classification, Control and Appeal) Rules, 1956. - ii. The Administrative Department i.e., (Forest Department) shall maintain an up-to-date and final seniority list of the service. - 15. Residuary matters:- In regard to matters not specifically covered by - these rules or by regulations or orders issued thereunder or by a special order, the members of the service shall be governed by the rules, regulations and orders applicable to the State Civil Service in general. - 16. Interpretation:- If any question arises relating to the interpretation of these rules, the Administrative Department shall interpret these rules. Further, any matter, if and when required, shall be referred to the General Administration Department on case-to-case basis, whose decisions thereon shall be final and binding. ### 16. Repeal and Savings:- - i. The Jammu & Kashmir Wildlife (Gazetted) Service recruitment rules, 1994, notified vide SRO-158 of 1994, dated 12.08.1994 or any other rules corresponding to these rules and in force immediately before the commencement of these rules are hereby repealed so far as they are repugnant to/ inconsistent with these rules. - ii. Notwithstanding such appeal, any appointment order made or action taken under the provisions of the rules so repealed shall be deemed to have been made or taken under the corresponding provisions of these rules # By order of the Lieutenant Governor. # SCHEDULE-I | Class | Category | Cadre | Designation of the post | Pay Level | No | |-------|----------|-------|------------------------------------|-----------|----| | | | | 2 congruences on and poor | | po | | 1 | 2 | 3 | 4 | 5 | | | | | | | | | | 1 | | UT | Chief Wildlife Warden | Level 16 | | | 2 | II | • | Chief Conservator of Forests (ET) | Level 14 | | | 3 | III | • | Regional Wildlife Warden | Level 12 | | | 4 | IV | • | Deputy Conservator of Forests (SG) | Level 12 | | | 5 | ٧ | • | Deputy Conservator of Forests | Level 11 | | | 6 | V-A | • | Deputy Director (P&S) | Level 11 | | | 7 | VI | • | Assistant Engineer (Civil) | Level 8A | | | | | - | Assistant Conservator of Forests | | | | 8 | VII | | (Wildlife) | Level 8 | | | 9 | | - | Accounts Officer | Level 8 | | | 10 | VIII | • | Veterinary Assistant Surgeon | Level 8 | | | 11 | | - | Private Secretary | Level 8 | | | 12 | IX | - | Range Officer Gr-1 | Level 6E | : | | | | | Total Gazetted Strength: | | 4 | # **SCHEDULE-II** | | - | _ _ | <u> </u> | | |-------|----------|--|-----------
--| | Class | Category | Designation of the post | Pay Level | Minimum Qualification for Direct
Recruitment | | 1 | 2 | 3 | 4 | 5 | | 1 | <u> </u> | Chief Wildlife Worden | Level 16 | | | | | Chief Wildlife Warden Chief Conservator of Forests | | - | | 2 | II | (ET) | Level 14 | - | | 3 | III | Regional Wildlife Warden | Level 12 | - | | 4 | IV | Deputy Conservator of Forests (SG) | Level 12 | - | | 5 | V | Deputy Conservator of Forests | Level 11 | - | | 6 | V-A | Deputy Director (P&S) | Level 11 | - | | 7 | VI | Assistant Engineer (Civil) | Level 8A | - | | 8 | VII | Assistant Conservator of
Forests (Wildlife) | Level 8 | i. A candidate must possess Bachelor's Degree with at least one of the following subjects namely Wildlife Sciences, Wildlife Management, Animal Husbandry and Veterinary Science, Botany, Chemistry, Geology, Mathematics, Physics, Statistics and Zoology or a Bachelor's Degree in Agriculture, Forestry or in Engineering of any of Universities incorporated by an Act of the Central or State Legislature on India or other educational institutions established by an Act of Parliament or declared to be a deemed as a University under Section 3 of the University Grants Commission Act, 1956, or posses an equivalent qualification. ii. Physical standards:- S.No. Gender Height (cms) 1. Male 163 2. Female 150 iii. Chest Girth (cm) Gender Normal Expansion Male 84 05 Female 79 05 | | | | | | iV. Walking Test: Male candidates will be required to pass a physical fitness test covering a distance of 25 kilometers within 04 hours on foor and the female candidates will be required to cover a distance of 16 kilometers, within four hours on foot. V. Health Certificate: In Case of direct recruitment, the candidates shall have to undergo medical examination to be conducted by a Medical Board. The Medical Board shall issue a health certificate and shall also certify that such candidates are fit to undertake strenuous outdoor work in the Forest Department. | |----|------|------------------------------|---------|--| | 9 | | Accounts Officer | Level 8 | - | | 10 | VIII | Veterinary Assistant Surgeon | Level 8 | - | | 11 | | Private Secretary | Level 8 | - | | | | | | i. A candidate must possess Bachelor's Degree with at least one of the following subjects namely Wildlife Sciences, Wildlife Management, Animal Husbandry and Veterinary Science, Botany, Chemistry, Geology, Mathematics, Physics, Statistics and Zoology or a Bachelor's Degree in Agriculture, Forestry or in Engineering of any of Universities incorporated by an Act of the Central or State Legislature on India or other educational institutions established by an Act of Parliament or declared to be a deemed as a University under Section 3 of the University Grants Commission Act, 1956, or posses an equivalent qualification. | | 12 | ΙX | Range Officer Grade-1 | Level 6E | ii. Phy
S.No | sical sta | ndar | | oight | |----|----|-----------------------|----------|--|--|---|--|---| | | | | | 5,110 | Ger | idei | | eight
:ms) | | | | | | 1. | Mal | le | | 63 | | | | | | 2. | Fen | nale | 1! | 50 | | | | | | | Normal
84
79 | (cm) Expa | nsion
5 | | | | | | | iV. Wal
Male of
to pas
coveri
kilome
foor a
will be
distan
four he
V. Hea
In Cas
candic
undere
be co
Board
issue
shall
candic
strenu | king Test
candidate
ss a phy
ng a
eters wit
and the form
our requi
ce of 16
ours on form | st: es will esical distan hin 0 emale red t kilome oot. ificate t recr shall eal exa edical n cert ertify e fit to | be req
fitness
ce of
4 hour
candio
o cov
eters, v
eters, v
eters
initation
a Me
Board
tificate
that | test: 25 rs on dates er a within to on to edical shall and such rtake | # **COMPARATIVE STATEMENT** | CI | Cate | Designation o | Pay L | Minimum Qualification for Di | Existing method of | Proposed metho | |----|------|---|-------------|------------------------------|---------------------------------|---| | SS | gory | f the post | evel | rect Recruitment | Recruitment | d of recruitment | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | | | | | | | 1 | | Chief Wildlife
Warden | 16 | - | By deputation from IFS Cadre | By deputation fr
om IFS Cadre | | 2 | Ш | Chief Conserv
ator of Forest
s (ET) | Level
14 | - | By deputation from
IFS Cadre | By deputation fr
om IFS Cadre | | 3 | | Regional Wild
life Warden | Level
12 | - | By deputation from IFS Cadre | By deputation fr
om IFS Cadre | | 4 | IV | Deputy
Conservator o | Level | - | - | By promotion fro
m Class 5 havin
g Minimum 05 Y | | | | f Forests (SG) | 12 | | | ears service in t
hat class. | |-----|---|-------------------------|-------|--------------------------|--------------------|-----------------------------------| | | | _ | | | | By promotion fro | | 5 | | Deputy
Conservator o | Level | - | _ | m Class 8 havin
g minimum 06 y | | ر ر | | f Forests | 11 | - | _ | ears service in t | | | | | | | | hat class | | | | | | | | By Deputation fr | | _ | \ | Deputy Direct | Level | | By Deputation from | | | 6 | | or (P&S) | 11 | - | Planning Departme | d Monitoring De | | | | | | | | partment | | | | Assistant Eng | Level | | By Deputation from | By Deputation fr | | 7 | | ineer (Civil) | 8A | - | R&B Department | om PW (R&B) De | | _ | | | | | · | partment | | | | | | i. A candidate must pos | | | | | | | | sess Bachelor's Degre | | | | | | | | e with at least one of | | | | | | | | he following subjects | | | | | | | | namely Wildlife Science | | | | | | | | es, Wildlife Managem | | | | | | | | ent, Animal Husbandr | | | | | | | | y and Veterinary Scie | | | | | | | | nce, Botany, Chemistr | | | | | | | | y, Geology, Mathemat | | | | | | | | ics, Physics, Statistics | | | | | | | | and Zoology or a Bac | | | | | | | | helor's Degree in Agri | | | | | | | | culture, Forestry or in | | | | | | | | Engineering of any of | | | | | | | | Universities incorpora | | | | | | | | ed by an Act of the Ce | 1 | | | | | | | ntral or State Legislat | | | | | | | | ure on India or other e | | | | | | | | ducational institutions | | | | | | | | established by an Act | | | | | | | | of Parliament or decla | | | | | | | | red to be a deemed a | | | | | | | | s a University under S | | | | | | | | ection 3 of the Univers | | | | | | | | ity Grants | | | | | | | | Commission Act, 1956 | | i. 50% by di | | | | | | , or posses an equival | | rect recru | | | | | | ent qualification. | | itment qu | | | | | | | | alifying e | | | | | | | | xaminatio | | | | | | ii. Physical standards: | | ns (writte | | | | | | - | i. 50% by dire | n and viv | | | | | | S. Gen Hei | ct recruitme | a voice to | | | | | | N der ght | nt. | be held b | | | | Assistant Con | | 0. (C | ii. 50% by pro | y the J&K | | | | servator of Fo | Level | ms | | | | 8 | VII | rests (Wildlife
) | 8 | 2. | Male
Fem
ale | 16
3
15
0 | motion from
class 12 with
five years se
rvice in that
class | | |----|------|--------------------------------------|------------|---|--|--|---|---| | | | | | | hest Girt | h (cm) | | with eight | | | | | | Gender | Norm
al | Expansi
on | | years ser | | | | | | Male | 84 | 05 | | vice in th | | | | |
 Female | 79 | 05 | | at class | | | | | | | | - | | | | | | | | Male
e re
hysi
veri
5 ki
hou
ema
be r
dista
ers, | iV. Walking Test: Male candidates will be required to pass a physical fitness test covering a distance of 2 skilometers within 04 hours on foot and the female candidates will be required to cover a distance of 16 kilometers, within four hours on foot. | | | | | | | | | | V. Healt | th Certifi | | | | | | | | | cate: | | | | | | | | | tme shal mec o be edic cal hea shal uch to u | ase of dire
nt, the can
I have to
dical exam
e conducte
al Board sha
Ith certific
Il also cert
candidate
indertake
atdoor worest Depart | ect recruindidates undergonination to do by a Moreon Medill issue a cate and iffy that sessore fit strenuouck in the | By Deputation fro | By Deputation | | 9 | | Accounts Offi
cer | Level
8 | | - | | By Deputation fro
m Finance Depar
tment | from Finance
Department | | 10 | VIII | Veterinary As
sistant Surge
on | Level
8 | | <u>-</u> | | By Deputation fro
m A&SH Departm
ent | By Deputation
from A&SH De
partment | | 11 | | Private Secret
ary | Level
8 | | - | | By Deputation fro
m GAD | By Deputation from GAD | | | | | | i. A | candidate | must pos | i) 50% by dir | i. 50% by di | | | | | | se | ss Bachel | or's Degre | ect recruitme
nt from amo | rect recru | | | | | | e ' | with at lea | st one of t | ngst the pers | itment fro | | | | | | he | following | subjects | ons having p | m among | | | | | | na | mely Wild | llife Scienc | assed Range | st the per | | | | | | | nt
ar
e,
Go
, F
d
or
ur
in
ve
by
al
or | and Animal Hand Veterina
Botany, Coeology, Ma
Physics, Sta
Zoology or
an Sersities income
an Act of
or State Landia or or
an india or or | hemistry, themistry, thematics at istics and a Bachel in Agriculty or in Engany of Unicorporated the Centregislature other eductutions est | exam
(writt
viva v
be he
e J&k
Servio
missi
writte
inatio | |---|----|----|--------------------------|-------------|--|---|--|---| | | | | | | Pa
d
Ui
or
Gi | olished by a
rliament of
to be a dec
niversity un
a 3 of the U
rants Comi
, 1956, or | or declare
emed as a
nder Secti
Jniversity
mission A | Enç | | | | | | | ed
n. | quivalent q hysical st | ualificatio | aph
ren
etc
d. On | | | 12 | IX | Range Officer
Grade-1 | Level
6E | N
o | der | ei
gh
t
(c
m
s) | ct: Botany as pres | | | | | | | 2 | Male
Fem
ale | 16
3
15
0 | B.Sc.). Silvicul bus as d for B. ry) | | | | | | | iii. C
Gender
Male
Female | Norm
al
84
79 | Expansi
on
05
05 | Field Cribus as d for B. | | ı | | | Ī | 1 | | | | N | iv. Walking Test: Male candidates will b e required to pass a p hysical fitness test co vering a distance of 2 5 kilometers within 04 hours on foot and the f emale candidates will rs qualifying examinations (written and viva voice to be held by the J&K Public Service Commission). The written examination will comprise the following persons: - **a.** General Engl - b. An essay to be written in English. - C. General Kno wledge. This will include e lementary sc ience, geogr aphy and cur rent events etc. - d. One of the fo llowing subje ct: Botany (Syllabus as prescribed for B.Sc.). Silviculture (Syllabus as prescribed for B.Sc. Forestry) Field Crop (Syllabus as prescribed for B.Sc. Agriculture) Note: A candi date must obt ain at least 40 % marks in ea ch subject for qualifying the rest. i. 50% by pro - sons havi ng passed Rangers q ualifying examinati ons (writt en and vi va voice t o be held by the J& K Public S ervice Co mmission). - ii. 50% by p romotion from cate gory of Ra nge Officer Gr ade-II/Sup ervisors/ Field Assi stants (Fr om Non-G azetted C adre of th e Wildlife Departme nt) with minimum Ten years service in that class out of whi ch five ye ars servic e in the fi eld of Wil dlife. | be required to cover a distance of 16 kilomet ers, within four hours on foot. V. Health Certifi cate: In Case of direct recruitement, the candidates shall have to undergo medical examination to be conducted by a Medical Board. The Medical Board shall issue a health certificate and shall also certify that such candidates are fit to undertake strenuous outdoor work in the Forest Department. | motion from category of S upervisors/ R ange Officer Grade-II/ Fiel d Assistants (From Non-G azetted Cadr e) with mini mum fifteen years service in th at class out of which ten years service in th e field of Wil dlife. | |---|--| |---|--| # Annexure-A SYLLABUS AND SCHEME OF EXAMINATION FOR ACF (WILDLIFE) | Α | Compulsory Subject | Syllabus | | | |---|-------------------------------|---|--|--| | 1 | General Knowledge – o | dge – one paper only of 100 marks | | | | 2 | English – one paper of
100 | The pattern of questions for this exam will be: | | | | | marks | Essay on a specific topic with choice of i. subjects. | | | | | | ii. Precise writing. | | | | | | iii. Usage and vocabulary. | | | | | |----|--|-------------------------------------|--|--|--|--| | | | iv. Comprehension of given passage. | | | | | | В | Optional Subject | | | | | | | | Any two subjects to be selected from the list of the optional subjects below. Each subject will have two papers of 100 marks each. | | | | | | | | Subject | | | | | | | 1 | Agriculture | | | | | | | 2 | Animal Husbandry & Veterinary Science | | | | | | | 3 | Botany | | | | | | | 4 | Chemistry | | | | | | | 5 | Forestry | | | | | | | 6 | Geology | | | | | | | 7 | Mathematics | | | | | | | 8 | Physics | | | | | | | 9 | Statistics | | | | | | | 10 | Zoology | | | | | | | 11 | Engineering:- | | | | | | | | - Agricultural | | | | | | | | - Chemical | | | | | | | | - Electrical | | | | | | | | - Civil | | | | | | | | - Mechanical | | | | | | | | - Computer | | | | | | | | -Electronics | | | | | | | 12 | Horticulture | | | | | | | 13 | Computer
Application/Science | | | | | | | 14 | Environmental Science | | | | | | Provided that the candidates will not be allowed to offer the following combination of subjects: - a. Agriculture and Agricultural Engineeringb. Agriculture and Animal Husbandry & Veterinary Science. - c. Chemistry and Chemical Engineering. - d. Mathematics and Statistics. - e. Of the Engineering subjects viz. Agricultural Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering and Mechanical Engineering not more than one subject. The total number of questions in the question papers of optional subjects will be eight. All questions will carry equal marks. Each paper will be divided into two parts. Viz. Part-A and Part-B, each part containing four questions. Out of eight questions, five questions are to be attempted. One question in each part will be compulsory. Candidates will be required to answer three more questions out of the remaining six questions, taking at least one question from each Part. In this way, at least two questions will be attempted from each part i.e. one compulsory question plus one more. # **COMPULSORY SUBJECTS** # **GENERAL KNOWLEDGE** General Studies: - Shall be the following with stress on Environmental issues. - 1. Modern History of India and Indian Culture. - 2. Current events of national and international importance. - 3. Statistical analysis, graphs and diagrams. - 4. Indian Polity; - 5. Indian Economy and Geography of India; - 6. The role and impact of Science and technology in the development of India. Modern History of India and Indian Culture will cover the broad history of the country from about the middle of the nineteenth century and onwards including questions on Freedom Fighters of India. The part relating to statistical analysis, graphs and diagrams will include exercises to test the candidate's ability to draw common sense conclusions from information presented in statistical, graphical or diagrammatical form and to point out deficiencies, limitations or inconsistencies therein. The part relating to
Indian Polity, will include questions on the political system in India. In the part pertaining to the Indian Economy and Geography of India, questions will be put on planning in India and the physical, economic and social geography of India. In the third part relating to the role and impact of science and technology in the development of India, questions will be asked to test the candidate's awareness of the role and impact of science and technology in India; emphasis will be on applied aspects. # **ENGLISH** The pattern of questions for this exam will be: - i. Essay on specific topic with choice of subjects. - ii. Precise wiring. - iii. Usage and vocabulary. - iv. Comprehension of given passage. # OPTIONAL SUBJECTS AGRICULTURE # Paper-I Ecology and its relevance to man, natural resources, their management and conservation. Physical and social environment as factors of crop distribution and production. Climatic elements as factors of crop growth, impact of changing environments on cropping pattern as indicators of environments. Environmental pollution and associated hazards to crops, animals and humans. Cropping patterns in different agro climatic zones of the country-impact of high yielding and short duration varieties on shifts in cropping patterns. Concepts of multiple cropping, multi-storey, relay and intercropping and their importance in relation to food production, package of practices for production of important cereals, pulses, oilseed fibre, sugar and commercial crops grown during Kharif and Rabi seasons in different regions of the country. Important features, scope and propagation of various types of forestry plantations, such as, extension/social forestry, agro forestry and natural forests. Weeds, their characteristics, dissemination and association with various crops; their multiplication, cultural, biological and chemical control of weeds. Processes and factors of soil formation, classification of Indian soils including modern concepts, Mineral and organic constituents of soils and their role in maintaining soil productivity. Problem soils, extent and distribution in India and their reclamation. Essential plant nutrients and other beneficial elements in soils and plants; their occurrence, factors affecting their distribution, functions and cycling in soils. Symbiotic and non-symbiotic nitrogen fixation, Principles of soil fertility and its evaluation for judicious fertilizer use. Soil conservation planning on water shed basis, Erosion and run off management in hilly, foot hills and valley lands; processes and factors affecting them. Dryland agriculture and its problems. Technology for stabilizing agriculture production in rainfed agriculture area. Water use efficiency in relation to crop production criteria for scheduling irrigations, ways and means of reducing run off losses of irrigation water, Drainage of water logged soils. Farm management, scope, importance and characteristics, farm planning and budgeting, Economics of different types of farming systems. Marketing and pricing of agricultural inputs and outputs, price fluctuations and their cost; role of co-operatives in agricultural economy, types and systems of farming and factors affecting them. Agricultural extension, its importance and role, methods of evaluation of extension programmes, socio-economic survey and status of big, small and marginal farmers and landless agricultural labourers, the farm mechanization and its role in agricultural production and rural employment. Training programmes for extension workers, lab to land programmes. ### **Paper-II** Heredity and variation, Mendels law of inheritance, Chromosomal theory of inheritance, Cytoplasmic inheritance, Sex linked, sex influenced and sex limited characters. Spontaneous and induced mutations. Quantitative characters. Origin and domestication of field crop. Morphology patterns of variations in varieties and related species of important field crops. Causes and utilization of variations in crop improvement. Application of the principles of plant breeding to the improvement of major field crops; methods of breeding of self and cross pollinated crops. Introduction, selection, hybridization. Heterosis and its exploitation, Male sterility and self incompatibility utilization of Mutation and polyploidy in breeding. Seed technology and importance; production, processing and testing of seeds of crop plants; Role of national and state seed organizations in production, processing and marketing of improved seeds. Physiology and its significance in agriculture nature, physical properties and chemical constitution of protoplasm; imbibition, surface tension, diffusion and Osmosis. Absorption and translocation of water, transpiration of water economy. Enzymes and plant pigments: photosynthesis-modern concepts and factors affecting the process, aerobic and anaerobic respiration. Growth and development; photo periodings and vernalization. Auxin, hormones and other plant regulators and their mechanism of action and importance in agriculture. Climatic requirements and cultivation of major fruits, plants and vegetable crops, the package of practices and the scientific basis for the same. Handling and marketing problems of fruits & vegetables, Principal methods of preservation, important fruits and vegetable products, processing techniques and equipment. Role of fruit and vegetable in human nutrition; landscape and floriculture including raising of ornamental plants and design and layout of lawns and gardens. Diseases and pests of field vegetable, orchard and plantation crops of India and measures to control these. Causes and classification of plant diseases; Principles of plant disease control including exclusion, eradication, immunization and protection, Biological control of pests and disease; integrated management of pests and diseases. Pesticides and their formulations, plant protection equipment, their care and maintenance. Storage pests of cereals and pulses, hygiene of storage godowns, preservation and remedial measures. Food production and consumption trends in India. National and International food policies. Procurement, distribution, processing and production constraints, Relation of food production to national dietary pattern, major deficiencies of calorie and protein. # **ANIMAL HUSBANDRY AND VETERINARY SCIENCE** # Paper-I 1. Animal Nutrition: Energy sources, energy, metabolism and requirements for maintenance and production of milk, meat, eggs and wool. Evaluation of feeds as sources of energy. - 1.1. Advanced studies in Nutrition-protein-sources of protein, metabolism and synthesis, protein quantity and quality in relation to requirements. Energy protein ratios in ration. - 1.2. Advanced studies in Nutrition Minerals: Sources, Functions, requirements and their relationship of the basic minerals nutrients including trace elements. - 1.3 Vitamins, Hormones and Growth stimulating, substances-Sourcesfunctions, requirements and inter-relationship with minerals. - 1.4. Advanced Ruminant Nutrition: Dairy Cattle Nutrients and their metabolism with reference to milk production and its composition Nutrient requirements for calves, heifers dry and milking cows and buffaloes. Limitations of various feeding systems. - 1.5. Advanced Non-Ruminant Nutrition Poultry-Nutrients and their metabolism with reference to poultry, meat and egg production. Nutrients requirements and feed formulation and broilers at different ages. - 1.6. Advanced Non-Ruminant Nutrition Swine- Nutrients and their metabolism with special reference to growth and quality of meat production, Nutrient requirement and feed formulation for baby growing and finishing pigs. - 1.7. Advanced Applied Animal Nutrition- A critical review and evaluation of feeding experiments, digestibility and balance studies. Feeding standards and measures of feed energy. Nutrition requirements for growth, maintenance and production Balanced rations. ### 2. Animal Physiology: - 2.1. Growth and Animal Production: Prenatal and postnatal growth, maturation, growth curves, measures of growth factors affecting growth, conformation, body composition meat quality. - 2.2. Milk production and reproduction and digestion-Current status of hormonal control of mammary, development milk secretion and milk ejection, composition of milk of cows and buffaloes. Male and female reproduction organs their components and function. Digestive organs and their functions. - 2.3. Environmental Physiology Physiological relations and their regulation; mechanisms of adaption, environmental factors and regulatory mechanism involved in animal behaviour, methods of controlling climatic stress. 2.4. Semen quality: Preservation and Artificial insemination Components of semen, composition of spermatozoa chemical and physical properties of ejaculated semen, factors affecting semen in vivo and in vitro. Factors affecting semen preservation, composition of diluents, sperm concentration transport of diluted semen. Deep Freezing techniques in cows, sheep and goats, swine and poultry ### 3. Livestock Production and management - 3.1. Commercial Dairy Farming—comparison of dairy farming in India with advanced countries. Dairying under mixed farming and as a specialized farming, economic dairy farming, starting of a dairy farm. Capital and land requirement, organization of the dairy farm. Procurement of goods; opportunities in dairy farming, factors determining the efficiency of dairy animal, Herd recording, budgeting, cost of milk production, pricing policy; Personnel Management. - 3.2. Feeding practices of dairy-cattle-Developing Practical and Economic ration for dairy cattle, supply of greens throughout the year, field and fodder requirements of Dairy Farm, Feeding regimes for day and young stock and bulls, heifers and breeding animals; new trends in feeding young and adult stock; Feeding records. - 3.3. General problems of sheep, goat, pigs and poultry management. - 3.4. Feeding of animals under
drought conditions. ### 4. Milk Technology: - 4.1. Organization of rural milk procurement, collection and transport of raw milk. - 4.2. Quality, testing and grading raw milk, Quality storage grades of whole milk. Skimmed milk and cream. - 4.3. Processing, packaging, storing distributing marketing defects and their control and nutritive properties of the following milks. Pasteurized, standardized, toned, double toned, sterilized, homogenized, reconstituted, recombined, field and flavoured milks. - 4.4. Preparation of cultured milks, cultures and their management. Vitamin D soft curd acidified and other special milks. - 4.5. Legal standards, Sanitation requirement for clean and safe milk and for the milk plant equipment. ### Paper-II - Genetics and Animal breeding: Probability applied to Mendelian inheritance Hardy Weinberg Law. Concept and measurement of inbreeding and heterozygosity Wright's approach in contrast to Malecot's Estimation of Parameters and measurements. Fishers theorem of natural selection, polymorphism. Polygenic systems and inheritance of quantitative traits. Casual components of variation Biometrical models and covariance between relatives. The theory of Patho coefficient applied to quantitative genetic analysis. Heritability Repeatability and selection models. - 1.1. Population, Genetics applied to Animal Breeding-Population Vs. individual, population size and factors changing it. Gene numbers, and their estimation in farm animals, gene frequency and zygotic frequency and forces changing them, mean and variance approach to equilibrium under different situations, sub-division of phenotypic variance; estimation of additive non-additive genetic and environmental variances in Animal population. Mendelism and blending inheritance. Genetic nature of differences between species, races, breeds and other subspecific grouping and the grouping and the origin of group differences. Resemblances between relatives. - 1.2. Breeding systems Heritability repeatability, genetics and environmental correlations, methods of estimation and the precision of estimates of animal data. Review of biometrical relations between relatives, mating systems, inbreeding outbreeding and uses. phenotypic assortive mailing aids to selections. Family structure of animal population under non random mating systems. Breeding for threshold trans, selection index, its precision. General and specific combining ability, choice of effective breeding plans. Different types and methods of selection, their effectiveness and limitations, selection indices construction of selection in retrospect; evaluation of genetic gains through selection, correlated response in animal experimentations. Approach to estimation of general and specific combining ability, Diallele, fractional dialele crosses, reciprocal recurrent selection: inbreeding and hybridization. 2. Health and Hygiene-Anatomy of Ox and Fowl. Histological technique freezing, paraffin embeding etc. Preparation and staining of blood films. - 2.1. Common histological stains, Embryology of a cow. - 2. 2. Physiology of blood and its circulation, respiration, excretion, Endocrine glands in health and disease. - 3. 3. General knowledge of pharmacology and therapeutics of drugs. - 4. 4. Vety Hygiene with respect of water, air and habitation. - 2.5. Most common cattle and poultry diseases, their mode of infection, prevention and treatment etc. Immunity, General Principles and Problems of meat inspection jurisprudence of Vet practice. - 2.6. Milk Hygiene. - 3. Milk Product Technology-Selection of raw materials assembling, production, processing, storing, distributing and marketing milk products such as Butter, Ghee, Khoa, Channa, Cheese; Condensed evaporated, dried milk and baby foods; Ice cream and Kulfi; by-products; whey products, butter milk lactose and casein. Testing, Grading, judging milk products ISI and Agmark specifications, legal standards, quality control nutritive properties. Packaging, processing and operational control costs. ## 4. Meat Hygiene - 4.1. Zoonosis Diseases transmitted from animals to man. - 4.2. Duties and role of Veterinarians in a slaughter house to provide meat that is produced under ideal hygienic conditions. - 4.3. By-products from slaughter houses and their economic utilisation. - 4.4. Methods of collection, preservation and processing of hormonal glands for medicinal use. ### 5. Extension: - **5.1.** Extension different methods adopted to educate farmers under rural conditions. - 5.2. Utilisation of fallen animals for profit extension education etc. - 5.3. Define Trysem Different possibilities and methods to provide self employment to educated youth under rural conditions. - 5.4. Cross breeding as a method of upgrading the local cattle. # **BOTANY** # Paper-I - Microbiology: viruses, bacteria, plasmids- structure and reproduction. General account of infection and immunology, Microbes in agriculture industry & medicine, and air, soil and water. Control of pollution using micro-organisms. - 2. Pathology: Important plant diseases in India caused by viruses, bacteria, mycoplasma, fungi and nematodes. Modes of infection, dissemination, physiology and parasitism and methods of control, Mechanism of action of biocides. Fungal toxins. - 3. Cryptogams Structure and reproduction from evolutionary aspect and ecology and economic importance of algae-fungi, bryophytes and pteridophytes. Principal distribution in India. - 4. Phanerogams: Anatomy of wood, secondary growth Anatomy of C and C plants. Stomatal types Embryology, barriers to sexual incompatibility. Seed structure, Apomixis and polyembryony. Palynology and its applications. Comparison of systems of classification of angiosperms. Modern trends in biosystematics. Taxonomic and economic importance of Cycadaceae, Pinaceae, Gnetabes, Magnoliaceae, Ranunculaceae, Cruciferae, Rosaceae, Leguminosae, Euphorbiaceae. Malvaceae Dipterocarpaceae. Umbelliferae, Asclepiadaceae, Verbaneceae, Solanceae, Rubiaceae, cucurbitaceae. Compositae, Gramineae, Plame, Liliaceae. Musacease and Orchidaceae. - 5. Morphogenesis, Polarity symmetry and totipotency. Differentiation and dedifferentiation of cells and organs. Factors of morphogenesis, Methodology and applications of cell, tissues, organ and protoplast cultures from vegetative and reproductive parts, Somatic hybrids. ### Paper-II Cell Biology: Scope and perspective General knowledge of modern tools and techniques in the study of cytology-Prokarytic and eukaryotic cells-structural and ultrastructural details. Functions of organelles including membrances. Detailed study of mitosis and meiosis. Numerical and structural variations in chromosome and their significance. Study of poltyene and lampbrush chromosomes-structure, behaviour and cytological significance. Genetics and Evolutions: Development of genetics and gene concept. Structure and role of nucleic acids in protein synthesis and reproduction. Genetic code and regulation of gene expression. Gene amplification. Mutation and evolution, Multiple factors, linkage and crossing over. Methods of gene mapping. Sex chromosomes and sex linked inheritance. Male sterility, its significance in plant breeding. Cytoplasmic inheritance. Elements of human genetics. standard deviation and Chi-square analysis. Gene transfer in micro-organisms. Genetic engineering. Organic-evolution evidence, mechanism and theories. Physiology and Biochemistry: Detailed study of water relations. Mineral nutrition and ion/transport. Mineral deficiencies. Photosynthesismechanism and importance, photosystems I and II, photorespiration. Respiration and fermentation. Nitrogen fixation and nitrogen metabolism. Protein synthesis. Enzymes. Importance of secondary metabolites. Pigments as photoreceptors, photoperiodism, flowering. Growth indices, growth movements. Senescence. Growth substances their chemical nature, role and applications in agrihorticulture. Agrochemicals, Stress physiology. Vernalization Fruit and seed physiology - dormancy, storage and germination of seed. Parthenocarphy, fruit ripening. Ecology: Ecological factors. Concept and dynamics of community, succession. Concept of biospheres. Conservation of ecosystems. Pollution and its control. Forest types of India. Afforestation, deforestation and social forestry Endangered plants. Economic Botany: Origin of cultivated plants. Study of plants as sources of food, fodder and forage, fatty oils, wood and timber, fiber, paper rubber, beverages, alcohol, drugs, .narcotics, resins and gums, essential oils, dyes, mucilage, insecticides and pesticides, Plant indicators Ornamental plants. Energy plantation. # **CHEMISTRY** ### Paper-1 1. Atomic structure and chemical bonding: Quantum theory, Heisenberg's uncertainty principle, Schrödinger wave equation (time independent) Interpretation of the wave function, particle in a one dimensional box, quantum numbers, hydrogen atom wave functions. Shapes of s.p. and d orbitals, ionic bond, Lattice energy, Born Haber cycle, Fajans rule, dipole moment, characteristics of ionic compounds, electro-negativity differences. Covalent bond and its general characteristics; valence bond approach Concept of resonance and resonance energy. Electronic configuration of H 2 , H $^2_{\rm N0}$ $^3_{\rm N0}$, F, NO, CO and HF molecules in terms of molecular orbital approach. Sigma and pi bonds, bond order, bond strength and bond length. - 2. Thermodynamics: Work, heat and energy: First law of thermodynamics Enthalpy, heat capacity Relationship between Cp and Cv. Laws of thermo-chemistry Kirchoffs equation Spontaneous and non-spontaneous changes, second law of thermodynamics, Entropy changes in gases for reversible and irreversible processes. Third law of thermodynamics Free energy, variations of free energy of a gas with temperature, pressure and volume. Gibbs-Helmholtz equation. Chemical potential, Thermodynamic criteria for equilibrium. Free energy change in chemical reaction and equilibrium
constant. Effect of temperature and pressure on chemical equilibrium. Calculation of equilibrium constants from thermodynamic measurements. - 3. Solid State: Forms of solids, law of constancy of interfacial angles crystal systems and crystal classes (crystallographic groups). Designation of crystal laces, lattice structure and unit cell. laws of rational indices. Bragg's law X-ray diffraction by crystals. Defects in crystals Elementary study of liquid crystals. - 4. Chemical kinetics: Order and molecularity of a reaction. Rate equations (differential and integrated forms) of zero, first and second order reactions half life of a reaction. Effect of temperature, pressure and catalysts on reaction rates. Collision theory of reaction rates of bimolecular reactions. Absolute reaction rate theory. Kinetics of polymerisation and photo chemical reactions. - 5. *Electrochemistry*: Limitations of Arrhenius theory of dissociation, Debye-huckel theory of strong electrolytes and its quantitative treatment. Electrolytic conductance theory and - theory of activity coefficients. Derivation of limiting laws for various equilibria and transport properties of electrolyte solutions. - 6. Concentration cells, liquid junction potential, application of e.m.f measurements of fuel cells. - 7. *Photochemistry*: Absorption of light, Lambert-Beer's Laws. Laws of photochemistry. Quantum efficiency. Reasons for high and low quantum yields. Photoelectric cells. - 8. General Chemistry of 'd' block elements. - a. Electronic configuration; Introduction to theories of bonding in transition metal complexes, Crystal field Theory and its modifications; applications of the theories in the explanation of magnetism and electronic spectra of metal complexes. - b. *Metal Carbonyls:* Cyclopentadienyl, Olefin and acetylene complexes - c. Compounds with metal -metal bonds and metal atom clusters. - General Chemistry of 'f' block elements Lanthanides and actinides: Separations, Oxidation states, magnetic and spectral properties. - Reactions in non aqueous solvents (liquid ammonia and sulphur dioxide). ### Paper-II Reaction mechanisms: General methods (both kinetic and non-kinetic) of study of mechanisms of organic reactions illustrated by examples: Formation and stability of reactive intermediates (carbocations, carbanions, free redicals, carbenes, nitrenes and benzynes) $SN\ 1$ and SN2 mechanisms - Hi, E2 and EtcB eliminations-cis and trans addition to carbon, to carbon double bonds-mechanism of addition to carbon oxygen double bonds - Michael addition-addition to conjugated carbon-carbon double bonds - aromatic electrophilic and nucleophilic substitutions allylic &. benzylic substitutions. - 2. Pericyclic reactions- Classification and examples an elementary study of Woodward Hoffmann rules of pericyclic reactions. - 3. Chemistry of the following name reactions Aldol condensation, Claisen condensation, Dieck-mann reaction, Perkin reaction, Reimer- Tieman reaction, Cannizzaro reaction. ### 4. Polymeric Systems - a. Physical chemistry of polymers, End group analysis, Sedimentation, Light Scattering and viscosity of polymers. - b. Polyethylene, Polystyrene, Polyvinyl Chloride, Ziegler Natta Catalysis, Nylon Terylene. c. Inorganic Polymeric Systems; Phosphonitric halide compounds; silicones, Borazines. Friedel - Craft reaction, Reformatsky reaction, Pinacol pinacolone, Wagner-Meerwein' and Beckmann rearrangements and their mechanism - uses of the following reagents in organic synthesis: $_{0}\mathbf{5}_{_{0}}\mathbf{4}_{_{HIO}}\mathbf{4}$, NBS, diborane, Na-liquid ammonia, NaBH $\mathbf{4}$, LiA IH $\mathbf{4}$ - 5. Photochemical reactions of organic and inorganic compounds, types of reactions and examples and synthetic uses-Methods used in structure determination; Principles and applications of UV-visible, IR, IH, NMH, and mass spectra for structure determination of simple organic and inorganic molecules. - 6. Molecular Structural determinations: Principles and Applications to simple organic and inorganic Molecules. - i. Rotational spectra of diatomic molecules (Infra red and Raman), isotopic substitutions and rotational constants. - ii. Vibrational spectra of diatomic linear symmetric, linear asymmetric and bent triatomic molecules (infrared and Raman) - iii. Specificity of the functional groups (Infrared and Raman) - iv. Electronic Spectra Singlet and triplet states, conjugated, double bonds, alpha beta. unsaturated carbonyl compounds. - v. Nuclear magnetic resonance: Chemical shifts, spin-spin Coupling. - vi. Electron Spin Resonance: Study of inorganic complexes and free radicals. # **FORESTRY** #### **PAPER-I** ### Section - A # 1. Silviculture - Principles and Practices: Growth and development of trees; classification of forests; growth of forests; factors of locality; natural and artificial regeneration of forests; methods of propagation, grafting techniques; site factors; forest nurseries – classification, layout, nursery beds, containers, nursery operations, nursery techniques, types of planting stock, grading and hardening of seedlings, special approaches; organization of plantation work; planting techniques and afforestation of different types of areas; establishment and tending. # 2. Silvicultural Systems: Classification of Silvicultural systems; Clear felling; Uniform; Shelterwood; Selection; Coppice; Conversions. Silvicultural systems for management of temperate, subtropical, humid tropical, dry tropical and coastal tropical forests with special reference to plantation silviculture, choice of species, establishment and management of standards, enrichment methods, technical constraints, intensive mechanized methods, aerial seeding, thinning. ### 3. Silviculture of trees and shrubs: Silviculture of some of the economically important species in India such as Abies pindrow, Picea smithiana, Pinus wallichiana, Cedrus deodara, Pinus roxburghii, Quercus species, Populus species, Salix species, Ulmus wallichiana, Alnus nitida, Acer species, Morus alba, Toona ciliate, Bauhinia variegate, Juglans regia, Olea cuspidate, Acacia nilotica, Dalbergia sissoo, Acacia catechu, Albizia lebbeck, Tectona grandis, Casuarina equisetifolia, Eucalyptus species, Terminalia species, Emblica officinalis Bombax ceiba, Shorea robusta, Santalum album, Vitex negandu, Dodonia viscose, Bamboos and canes. Recent advances in temperate and subtropical silvicultural research and practices. #### **Section B** # 1. Agroforestry, Social Forestry, Joint Forest Management and Rangeland Management: **Agro-forestry** – scope and necessity; role in the life of people and domestic animals and in integrated land use, planning especially related to (i) soil and water conservation; (ii) water recharge; (iii) nutrient availability to crops; (iv) nature and eco-system preservation including ecological balances through pest-predator relationships and (v) providing opportunities for enhancing bio-diversity, medicinal and other flora and fauna. Agro-forestry systems under different agro-ecological zones; selection of species and role of multipurpose trees and NTFPs, techniques, food, fodder and fuel security. Research and Extension needs. **Social/Urban Forestry**: objectives, scope and necessity; peoples participation. **Participatory Forest Management**: principles, objectives, methodology, details of steps involved such as formation of Village Forest Committees; scope, benefits and role of NGOs. **Rangeland Management**: Introduction, definition and scope; Environmental factors determining rangelands; manmade and natural rangelands; Rangelands in India-origin, distribution, characteristics, status and management; Grazing Capacity, Planned grazing systems and impact of grazing on forests, soils and water. # 2. Forest Soils, Soil Conservation and Watershed management: **Forests Soils:** Classification, factors affecting soil formation; physical, chemical and biological properties. **Soil Conservation:** definition, causes for erosion; types – wind and water erosion; conservation and management of eroded soils/areas, wind breaks, shelter belts; sand dunes; reclamation of saline and alkaline soils, water logged and other waste lands. Role of forests in conserving soils. Maintenance and build up of soil organic matter, provision of lopping for green leaf manuring; forest leaf litter and composting; Role of micro-organisms in ameliorating soils; N and C cycles, VAM. **Watershed Management:** concept of watershed; role of forests and trees in overall resource management, forest hydrology, watershed development in respect of torrent control, river channel stabilization, avalanche and landslide controls, rehabilitation of environmental functions of forests; water-harvesting and conservation; ground water recharge and watershed management; role of integrating forest trees, horticultural crops, field crops, grass and fodders. #### 3. Environmental Conservation: **Environment:** components and importance; principles of conservation; impact of deforestation, forest fires and various human activities like mining, construction and developmental projects, population growth on environment. **Pollution:** types, global warming, green house effects, ozone layer depletion, acid rain, impact and control measures, environmental monitoring; concept of sustainable development. Role of trees and forests in environmental conservation; control and prevention of air, water and noise pollution. Environmental policy and legislation in India. Environmental Impact Assessment. Economics assessment of watershed development vis-a-vis ecological and environmental protection. ### 4. Tree improvement and Seed Technology: General concept of tree improvement, methods and techniques, variation and its use, provenance, seed source, exotics; quantitative aspects of forest tree improvement, seed production and seed orchards, progeny tests, use of tree improvement in natural forest and stand improvement, genetic testing programming,
selection and breeding for resistance to diseases, insects, and adverse environment; the genetic base, forest genetic resources and gene conservation in situ and ex-situ. Cost benefit ratio, economic evaluation. ### PART-II #### **Section-A** ### 1. Forest Management and Working Plans: **Forest Management:** objective and principles; techniques, stand structure and dynamics, sustained yields; rotation; normal forest; growing stock and its increment; regulation of yield; forest organization; management of forest plantations, commercial forests, forest cover monitoring. **Working Plans:** working plans in forestry; objectives and scope; unit of working plan; period of working plan; annual plan of operations; preparation of working plans, format of working plan; control forms, stock maps, compartment histories and plantation journals; evaluation and monitoring tools and approaches for integrated planning; multipurpose development of forest resources and forest industries development. ### 2. Forest Mensuration and Remote Sensing: Methods of measuring diameter, girth, height and volume of trees; form-factor; volume estimation of stand, current annual increment; mean and annual increment. Sampling methods and sample plots. Yield calculation; yield and stand tables, forest cover monitoring through remote sensing; Geographic Information Systems for management and modelling. ### 3. Surveying and Forest Engineering: **Forest surveying:** Fundamental definitions and concepts of surveying; linear measurements; different methods of surveying; levelling and contouring; maps and map reading. Forest Engineering: Basic principles; building materials and construction; roads and bridges; general principles, objects, types, simple design and construction of timber bridges; estimates. #### Section - B ## 1. Forest Ecology, Biodiversity Conservation and Dendrology: **Forest Ecology:** Biotic and abiotic components, forest eco-systems; forest community concepts; vegetation concepts, ecological succession and climax, primary productivity, nutrient cycling and water relations; physiology in stress environments (drought, water logging salinity and alkalinity). Forest types in India, identification of species, composition and associations; **Biodiversity Conservation:** definition, levels of study, distribution of diversity in life forms, hotspots of biodiversity. Measurement of diversity; diversity indices. Management of biodiversity; principles of conservation biology; *Ex situ* and *In situ* methods of conservation. Genetic and evolutionary principles in conservation; concept of rarity in plants. IUCN classification of rare/endangered plants. Biosphere concept; conservation of forest ecosystems; clonal parks; conservation efforts in India and worldwide. **Dendrology:** Scope of dendrology, taxonomic classification, importance of tree taxonomy in forestry. Description of the plants in scientific terms, study of spot characteristics of plants. Systematic identification of seeds, seedling, trees, and wood in field; vegetative morphology in identification of woody flora of forests. Floristics and procedures. Herbariums, collection processing and preservation of plant material, arboretums and xylariums. #### 2. Forest Resources and Utilization: Environmentally sound forest harvesting practices; logging and extraction techniques and principles, transportation system, storage and sale; Non-Timber Forest Products, (NTFPs) definition and scope; gums, resins, oleoresins, fibres, oil seeds nuts, rubber, canes, bamboos, medicinal plants, charcoal, lac and shellac, Katha and Bidi leaves collection; processing and disposal. Needs and importance of wood seasoning and preservation; general principles of seasoning, air and kiln seasoning, solar dehumidification, steam heated and electrical kilns. Composite wood; adhesives; manufacture, properties and uses of plywood, laminated wood, fibreboards, particle boards; importance of composite wood and present status. Pulp-paper and rayon; present position of supply of raw material to industry, wood substitution, utilization of plantation wood; problems and possibilities. Anatomical structure of wood, defects and abnormalities of wood, timber identification – general principles. ### 3. Forest Protection & wildlife Biology: Injuries to forest: abiotic and biotic, destructive agencies, insect-pests and disease, effects of air pollution on forests and forest die back. Susceptibility of forests to damage, nature of damage, cause, prevention, protective measures and benefits due to chemical and biological control. General forest protect against fire, equipment and methods, controlled use of fire, economic and environmental costs; timber salvage operations after natural disasters. Role of afforestation and forest regeneration in absorption of CO₂. Rotational and controlled grazing, different methods of control against grazing and browsing animals; effect of wild animals on forest regeneration, human impacts; encroachment, poaching, grazing, live fencing, theft, shifting cultivation and control. ### 4. Forest Economics and Legislation: **Forest Economics:** fundamental principles, cost-benefit analyses; estimation of demand and supply; analysis of trends in the national and international market and changes in production and consumption patterns; assessment and projection of market structures; role of private sector and co-operatives; role of corporate financing. Socio-economic analyses of forest productivity and attitudes; valuation of forest goods and service. **Legislation:** History of forest development; Indian Forest Policy of 1894, 1952, National Forest Policy 1988; people's involvement, Joint Forest Management, gender issues in forestry. Community participation in Wildlife Conservation. Forest laws; necessity; general principles. Indian Forest Act 1927; Forest Conservation Act 1980; Wildlife Protection Act 1972 and their amendments; application of Indian Penal Code in forest & wildlife offence cases, important judgements of Hon'ble Supreme Court of India with respect to Forest and Wildlife Protection & Conservation with particular reference to T.N. Godavarman case. # **GEOLOGY** ### Paper-I (General Geology, Geomorphology, Structural Geology, Palaeontology and Stratigraphy) ### (i) General Geology: Energy in relation to Geo-dynamic activities. Origin and interior of the Earth. Dating of rocks by various methods and age of the Earth. Volcanoes - causes and products; volcanic belts. Earthquakes-causes, geological effect and distribution, relation to volcanic belts. Geosynclines and their classification. Island arcs, deep sea trenches and mid-ocean ridges, sea-floor spreading and plate tectonics, Isostracy Mountains - types and origin. Brief ideas about continental drift, Origin of continents and oceans. Radioactivity and its application to geological problems. # (ii) Geomorphology: Basic concepts and significance. Geomorphic processes and parameters. Geomorphic cycles and their interpretation. Relief features; topography and its relation to structures and lithology. Major landforms Drainage systems. Geomorphic features of Indian subcontinent. ### iii. Structural Geology: Stress and strain ellipsoid, and rock deformation. Mechanics of folding and faulting. Linear and planer structures and their genetic significance. Petrofabric analysis, its graphic representation and application to geological problems. Tectonic framework of India. ### iv. Palaeontology: Micro and Macro-fossils, Modes of preservation and utility of fossil General idea about classification and nomenclature. Organic evolution and the bearing of paleontological studies on it. Morphology, classification and geological history including evolutionary trends of brachiopods, bivalves, gastropods, ammonids, trilobites, echinoids and corals. Principal groups of vertebrates and their main morphological characters, Vertebrates life through ages; dinosaurs; Siwalik vertebrates. Detailed study of horses, elephants and man, Gondwana flora and its importance. Types of microfossils and their significance with special reference to petroleum exploration. ### (v) Stratigraphy: Principles of Stratigraphy. Stratigraphic classification and nomenclature. Standard stratigraphical scale. Detailed study of various geological systems of Indian subcontinent. Boundary problems in stratigraphy. Correlation of the major Indian formations with their world equivalents. An outline of the stratigraphy of various geological systems in their type-areas. Brief study of climates and igneous activities in Indian subcontinent during geological past. Palaeogeographic reconstructions. ### Paper-II (Crystallography, Mineralogy, Petrology and Economic Geology) ### (i) Crystallography: Crystalline and non-crystalline substances. Special groups. Lattice symmetry. Classification of crystals into 32 classes of symmetry. International system of crystallographic notation. Use of stereographic projections to represent crystal symmetry. Twinning and twin laws. Crystal irregularities. Application of X-rays for crystal studies. ### (ii) Optical Mineralogy: General principles of optics. Isotropism and anisotropism; concepts of optical indicatrix, Pleochroism; interference colours and extinction. Optic orientation in crystals. Dispersion, optical accessories. ### (iii) Mineralogy: Elements of crystal chemistry - types of bondings. Ionic radiicoordination number, Isomorphism polymorphism & psudoneorphism. Structural classification of silicates. Detailed study of rock - forming minerals - their physical, chemical and optical properties, and uses, if any. Study of the alteration products of these minerals. ### (iv) Petrology: Magma, its generation, nature and composition. Simple phase diagrams of binary and ternary systems, and their significance. Bowen's Reaction Principle.. Magmatic differentiation; assimilation. Textures and structures, and their petrogenetic significance. Classification of igneous
rocks. Petrography and Petrogenesis of important rock types of India; granites and granites charnockites and charnockites. Decan basalts. Processes of formation of sedimentary rocks. Diagenesis and lithification. Textures and structures and their significance. Classification of sedimentary rocks, clastic and non-clastic. Heavy minerals and their significance. Elementary concept of depositional environments, sedimentary facies and provenance. Petrography of common rock types. Variable of metamorphism. Types of metamorphism. Metamorphic grades, zones and facies. ACF, AKF and AEM diagram Textures, structures and nomenclature of metamorphic rocks. Petrography and petrogenesis of important rock types. # (v) Economic Geology: Concept of ore, ore mineral and gangue; tenor or ores. Processes of formation of mineral deposits. Common forms and structures of ore deposits. Classification of ore deposits. Control of ore deposition Metalloginitic epochs. Study of important metallic and non metallic deposits, oil and natural gas fields, and coal fields of India Mineral wealth of India, Mineral economics, National Mineral Policy. Conservation and utilisation of minerals. (vi) Applied Geology: Essentials of prospecting and exploration techniques. Principal methods of mining, sampling, ore-dressing and beneficiation. Application of Geology in Engineering works. Elements of soil and ground water geology and geochemistry. Use of aerial photographs in geological investigations. # **MATHEMATICS** ### Paper-I # Any five questions may be attempted out of 12 questions to be set in the paper. Linear Algebra Vector space, bases, dimension of a finitely generated space, Linear Transformations, Rank and nullity of a linear transformation, Cayley Hamilton theorem, Eigen values and Eigen-vectors. Matrix of a linear transformation. Row and Coloumn reduction. Echelon form. Equivalence, Congruence and similarity. Reduction to canonical forms. Orthogonal, symmetrical, skew-symmetrical, unitary, Hermitian and skew- Hermitian matrices-their eigen values, orthogonal and unitary reduction of quadratic and Hermitian forms. Positive definite quadratic forms. Simultaneous reduction. Calculus. Real numbers, limits, continuity, differentiability, Mean-value theorem, Taylor's theorem, indeterminate forms, Maxima and minima. Curve Tracing. Asymptotes. Functions of several variables, partial derivatives, maxima and minima, Jacobian, Definite and indefinite integrals, Double and triple integrals (techniques only). Application to Beta and Gamma Functions. Areas volumes; centre of gravity. Analytic Geometry of two and three dimensions. First and second degree equations in two dimensions in cartesian and polar coordinates. Plane, sphere, paraboloid, Ellipsoid, hyperboloid of one and two sheets and their elementary properties. Curves in space, curvature and torsion, Frenet's formulae. Differential Equations. Order and Degree of a differential equation; differential equation of first order and first degree, variables seperable. Homogeneous, linear, and exact differential equations. Differential equations with constant coefficients. The complementary function and the particular integral of Vector, Tensor, Statics, Dynamics and Hydrostatics. - i. Vector Analysis- Vector Algebra, Differentiation of Vector function of a scalar variable, Gradient, divergence and curl in cartesian, cylindrical and spherical coordinates and their physical interpretation. Higher order derivatives. Vector identities and Vector equations, Gauss and Stokes Theorems. - ii. *Tensor Analysis* Definition of a Tensor, Transformation of coordinates, contravariant and covariant tensors. Addition and multiplication of tensors, contraction of tensors. Inner product, fundamental tensor, christoffel symbols, covariant differentiation, Gradient, Curl and divergence in tensor notation. - iii. Statics-Equilibrium of a system of particles, work and potential energy, Friction, Common Catenary. Principle of Virtual work. Stability of equilibrium. Equilibrium of forces in three dimensions. - iv. *Dynamics* Degree of freedom and constraints. Rectilinear motion, Simple harmonic motion. Motion in a plane. Projectiles. Constrained motion, work and Energy, Motion under impulsive forces, Kepler's laws Orbits under central forces. Motion of varying mass. Motion under resistance. - v. Hydrostatics-Pressure of heavy fluids, Equilibrium of fluids under given system of forces. Centre of pressure. Thrust on curved surfaces. Equilibrium of floating bodies. Stability of equilibrium and Pressure of gases, problems relating to atmosphere. ### Paper-II # This paper will be in two sections. Each section will contain eight questions. ### Candidates will have to answer any five questions. ### **Section-A** Algebra, Real Analysis, Complex Analysis, Partial Differential equations. ### **Section-B** Mechanics, Hydrodynamics, Numerical Analysis, Statistics including probability, operational Research. ### Algebra Groups, Subgroups, normal subgroups, homomorphism of groups, quotient groups. Basic isomorphism theorems. Sylow theorems Permutation Groups. Cayley's theorem. Rings and Ideals, Principal Ideal domains unique factorization domains and Euclidean domains. Field Extensions finit fields. ### Real Analysis Metric spaces, their topology with special reference to R sequence in a metric space, Cauchy sequence, Completeness, completion, Continuous functions, Uniform Continuity, Properties of continuous functions on compact sets. Riemann Steilties Integral, Improper integrals and their conditions of existence. Differentiation of functions of several variables. Implicit function theorem, maxima and minima. Absolute and Conditional Convergence of series of real and Complex terms, Rearrangement of series, Uniform convergence, infinite products. Continuity, differentiability and integrability for series, Multiple integrals. ### Complex Analysis Analytic functions, Cauchy's theorem, Cauchy's integral formula power series, Taylor's series, Singularities, Cauchy's Residue theorem and Contour integration. ### Partial Differential Equations Formation of partial differential equations, Types of integrals of partial differential equations of first order, Charpits methods, partial differential equation with constant coefficients. Mechanics Generalised Coordinates, Constraints, holonomic and non holonomic systems, D'Alembert's principle and Langranges equations, Moment of Inertia, Motion of rigid bodies in two dimension, Hydrodynamics. Equation of continuity, momentum and energy. Inviscid Flow Theory:— Two dimensional motion, Streaming motion, Sources and Sinks Numerical Analysis Transcedental and Polynomial Equations:- Methods of tabulation, bisection, regulatalsi, secants and Newton- Raphson and order of its convergence. Interpolation and Numerical Differentiation:- Polynomial interpolation with equal or unequal step size. Spline interpolation-Cubic splines, Numerical differentiation furmulae with error terms. Numerical Integration:- Problems of approximate quadrative, quadrature formulae with equispaced arguments, Caussian quadrature Convergence. Ordinary Differential Equations:- Euler's method, multisteppredictore Corrector methods-Adam's and Milne's method, Convergence and stability, Runge-Kutta methods. Probability and Statistics. 1. Statistical Methods: Concept of Statistical population and random sample, collection and presentation of data, Measure of location and dispersion. Moment and Shepard's corrections. Comulants. Measures of Skew ness and Kurtosis. Curve fitting by least squares Regression, correlation and correlation ratio. Rank correlation, partial correlation co-efficient and Multiple Correlation co-efficient. 2. *Probability:*- Discrete sample space, Events, their union and intersection etc. Probability Classical relative frequency and exiomatic approaches, Probability in continuum, Probability space Conditional probability and independence, Basic laws of Probability, - Probability of combination of events, Bayes theorem, Random Variable probability function, Probability density function. Distributions function, mathematical expectation, Marginal and conditional distributions, Conditional expectation. - 3. Probability distributions:- Binomial, Poisson, Normal, Gamma, Beta Cauchy, Multinomial, Hypergeometric, Negative Binomial, Chebychev's lemma (weak) Law of large numbers, Central limit theorem for independent and identical varieties. Standard errors, Sampling distribution of t F and Chi-square and their uses in tests of significance large sample tests for mean and proportion. Operational Research Mathematical Programming:- Definition and some elementary properties of convex sets, simplex methods, degeneracy, duality, and sensitivity analysis, rectangular games and their solutions, Transportation and assignment problems, Kuha Tukcer condition for non-linear programming. Bellman's optimality principle and some elementary applications of dynamic programming. Theory of Queues:- Analysis of steady- State and transient solutions for quequeing system with Poisson arrivals and exponential service time. Deterministic replacement models, Sequencing problems with two machines, n jobs 3 machines, n jobs (Special case) and n machines 2 jobs. ### **PHYSICS** ### Paper-I ### **MECHANICS, THERMAL PHYSICS AND WAVES AND OSCILLATIONS** ### 1. Mechanics Conservation laws; Collision impact parameter, scattering crosssection, centre of mass and lab systems with transformation of physical quantities, Rutherford Scattering. Motion of a rocket under constant force field. Rotating frames of reference, Coriolis force, Motion of rigid bodies, Angular momentum, torque and Procession of a Top, gyroscope, Central forces Motion under inverse square law, Kepler's law, Motion of Satellites (including geostationary). Galilean Relativity, Special theory of Relativity, Michelson-Morley Experiment, Iorentz Transformations addition theorem of velocities.
Variation of mass with Velocity, Massenergy equivalence. Fluid dynamics, streamlines, turbulance, Bernoulli's Equation with simple applications. ### 2. Thermal Physics: Laws of Thermodynamics, Entropy, Carnot's cycle, Isothermal and Adiabatic changes. Thermodynamic Potentials, Maxwell's relations, the Clausius- Clapeyron equation, reversible cell, Joule- Kelvin effect, Stefan Boltzmann Law. Kinetic Theory of Gases, Maxwell's Distribution law of Velocities, Equipartition of Energy, Specific heats of gases, mean Free path, Brownian Motion, Black Body radiation, specific heat of solids-Einstein and Debye theories, Wein's Law, Planck's Law, Solar constant. Thermalionization and stellar spectra. Production of low temperatures using adiabatic demagnetization and dilution refrigeration, Concept of negative temperature. ### 3. Waves and Oscillations: Oscillations, Simple harmonic motion, stationary and travelling waves, Damped harmonic motion, Forced Oscillation and Resonance. Wave equation, Harmonic solutions, Plane and Spherical waves, superposition of waves, Phase and Group velocities, Beats, Huygen's principle, interference. Diffraction Fresnel and Fraunhofer. Diffraction by straight edge, single and multiple slits. Resolving power of grating and Optical Instruments. Rayleigh criterion. Polarization; Production and Detection of polarized light (linear, circular and elliptical), Laser sources (Helium-Neon, Ruby, and semi conductor diode). Concepts of spatial and temporal coherence. Diffraction as a Fourier Transformation. Fresnel and Fraunhofer diffraction by rectangular and circular apertures, Holography; theory and applications. ### Paper-II ## ELECTRICITY AND MAGNETISM, MODERN PHYSICS AND ELECTRONICS ### 1. Electricity and Magnetism Coulomb's Law. Electric field. Gauss's Law, Electric -potential, Poisson and Laplace equations for a homogeneous dielectric, uncharged conducting sphere in a uniform field, Point charge and infinite conducting plane. Magnetic shell. Magnetic induction and field strength. Biot-Savart law and applications. Electromagnetic induction, Faradays's and Lenz's laws, Self and Mutual inductances. Alternating currents. L.C.R. circuits, series and parallel resonance circuits, quality factor. Kirchoffs laws with applications. Maxwell's equations and electromagnetic waves. Transverse nature of electromagnetic waves, Poynting vector. Magnetic fields in matter-dia para, ferro antiferro and ferri magnetism (qualitative approach only). ### 2. Modern physics Bohr's theory of hydrogen atom. Electron spin. Optical and X-ray Spectra. Stern-Gerlach experiment and spatial quantization. Vector model of the atom, spectral terms, fine structure of spectral lines J-J and L-S coupling, Zeeman effect, Paulis exclusion principle, Spectral terms of two equivalent and non-equivalent electrons. Gross and fine structure of electronic band spectra Raman effect. Photoelectric effect. Compton effect. Debroglie waves. Wave Particle duality and uncertainty principle. Schrodinger wave equation with application to (i) particle in a box, (ii) motion across a step potential, One dimensional harmonic oscillator eigen values and eigen functions. Uncertainty, Principle Radioactivity. alpha, beta and gamma radiations. Elementary theory of the alpha decay. Nuclear binding energy. Mass spectroscopy, Semi empirical mass formula. Nuclear fission and fusion-Elementary reactor Physics. Elementary particles and their classification, Strong, and weak Electromagnetic interactions. Particle accelerator; cyclotron, Leniar accelerators, Elementary particles and their classification Strong, and Weak electromagnetic interactions. Particle accelerator; cyclotron, Linear accelerators, Elementary ideas of superconductivity. ### 3. Electronics Band theory of solids- conductors, insulators and semiconductors, intrinsic and extrinsic semiconductors P-N junction, thermistor, Zenner diodes reverse and forward biased P-N junction, solar cell. Use of diodes and transistors for rectification, amplification, oscillation, modulation and detection of r.t. waves. Transistor receiver, Television, Logic Gates. ### **STATISTICS** ### Paper-I Attempt any 5 questions choosing at most 2 from each section. Four questions of equal weightage will be set in each section. ### i. Probability Sample space and events, probability measure and probability space, Statistical independence, Random variable as a measureable function, discrete and continuous random variables, Probability density and distribution functions, marginal and conditional distributions functions of random variables and their distributions, expectations and movements, conditional expectation, correlation coefficient; convergence in probability in LP almost everywhere; Markov, Chebychev and Kolmogrov inequalities, Borel- Cantelli lemma, weak and strong law of large numbers probability generating and characteristic functions. Uniqueness and continuous probability distributions, their interrelations including limiting cases. ### ii. Statistical Inference Properties of estimates, consistency, unbiasedness, efficiency, sufficiency and completeness. Cramer-Rao bond, Minimum variance unbiased estimation, Rao Blockwell and Lehmann Sheffe's theorem methods of estimation by movements maximum likelihood, minimum Chi-square. Properties of maximum likelihood estimators confidence intervals for parameters of standards distributions. Simple and composite hypotheses, statistical tests and critical region, two kinds of error, power function unbiased tests, most powerful and uniformly most powerful tests Neyman Person Lemma, Optimal tests for simple hypotheses concerning one parameter, monotone likelihood ratio property and its use in constructing UMP test, Likelihood ratio criterion and its asympiotic distribution, Chi-square and Kolmogoro tests for goodness of fit. Run test for randomness Sign test for Location, Wilcoxon-Mann-Whitney test and Kolmogor-Smirnov test for the two sample problem. Distribution free confidence intervals for quantities and confidence bands for distribution function. Notions of a sequential test, walds SPRT, its CC and ASN function. ### iii. Linear Inference and Multivariate Analysis Theory of least squares and Analysis of variance, Gauss-Mark off theory, normal equations, least square estimates and their precision. Tests of significance and intervals estimates based on least square theory in one way, two way and three way classified data. Regression Analysis, linear regression, estimates and tests about correlation and regression coefficient curve linear regression and orthogonal polynomials, test for linearity of regression Multivariate normal distribution, multiple regression, multiple and partial correlation. Mahalanoblis D2 and Hotening T2— Statistics and their applications (derivatiorns of distribution of D2 and T2 excluded) Fisher's discriminant analysis. ### Paper-II - i. Select any three sections - ii. Attempt any 5 questions from the selected sections, choosing at most, two questions from each selected section. Four questions of equal weight will be set in each section. ### Sampling Theory and Design of Experiments. Nature and scope of sampling, simple random sampling, sampling from finite populations with and without replacements estimation of the standard errors sampling with equal probabilities and PPS sampling. Stratified random and systematic sampling two stage and multistage sampling multi phase and cluster sampling schemes. Estimation of Population total and mean, use of biased and unbiased estimates auxiliary variables, double sampling standard errors of estimates cost and variance functions ratio and regression estimates and their relative efficiency. Planning and organization of sample surveys with special reference to recent large scale surveys conducted in India. Principles of experimental designs, CRD, RBD, LSD, missing plot technique factor experiments 2n and 3n design general theory of total and partial confounding and fractional replication. Analysis of split plot, BIB and simple lattice designs. ### **II. Engineering Statistics** Concepts of quality and meaning of control. Different type of control charts like X-R charts, P charts np charts and cumulative sum control charts. Sampling inspection Vs 100 percent inspection. Single, double, multiple and sequential sampling plans for attributes inspection, OC, ASN and ATI curves, Concepts of producer risk and consumer's risk AQL, AQQL, LTPD etc. Variable Sampling plants. Definition of Reliability, maintainability and availability. Life distribution failure rate and both tub, failure curve expotential and Weibull model. Reliability of series and Parallel systems and other simple configuration different types of redundancy like hot and cold and use of redundancy in reliability improvement problem in life testing censored and truncated experiments for exponential model. ### III. Operational Research Scope and definition of OR different types of models, their construction and obtaining solution. Homogenous discrete time Markov chains, transition probability matrix, classification of states and ergodic theorems. Homogenous continuous time Markov chains. Elements of queuing theory, M/M/I and M/M/K queues, the problem of machine interference and GI/M/I and M/GI queues. Concepts of scientific inventory management and analytical structure of inventory problems Simple models with deterministic and stochastic demand with and without lead time. Storage models with particular reference to dam type. The Structure and formation of a linear programming problem. The simplex procedure two phase methods and charnes- M Method with artificial variables. The quality theory of linear programming and its economic interpretation Sensitivity analysis. Transportation and assignment problems. Replacement of items that fail and those that deteriorate, group and individual replacement policies. Introduction to computers and elements of Fortran IV
Programming formats for input and output, statements specification and logic statements and sub-routines. Applications to some simple statistical problems. ### IV. Quantitative Economics Concept of time series, additive and multiplicative models, resolution into four components, determination of trend by free- hand drawing, moving averages, and fitting of mathematical curves, seasonal indices and estimate of the variance of the random components. Definition, construction, interpretation, and limitations of index numbers, Lespeyre Parsche Edgewoth- Marshall and Fisher index numbers their comparisons tests for index numbers and construction of cost of living index. Theory and analysis of consumer demand- specification and estimation of demand function. Demand elasticities. Theory of production, supply functions and elasticities, input demand functions. Estimation of parameters in single equation model- classical least squares, generalised least squares heterscedasticity, serial correlation, multicollinearity, errors in variables model simultaneous equation models - identification, rank and order conditions, Indirect least squares and two stage least squares. Short term economic forecasting. ### **V. Demography and Psychometry** Sources of demographic data; census registration; NSS and other demographic surveys. Limitation and uses of demographic data. Vital rates and rations; Definition construction and uses Life tables- complete and abridged: construction of life tables from vital statistics and census returns Uses of life tables. Logistic and other population growth curves. Measure of fertility, Gross and net reproduction rates Stable population theory, Uses of stable--- and quasi stable population techniques in estimation of demographic parameters. Morbidity and its measurement Standard classification by cause of death. Health surveys and use of hospital statistics. Educational and psychological statistics methods of standardisation of scales and tests, IQ tests, reliability of tests and T and Z scores. ### **ZOOLOGY** ### Paper-I ### **Section A** Non Chordata and Chordata, Ecology, Ethology, Biostatistics and Economic Zoology *Non Chordata and Chordata* - 1. A general survey, classification and relationship of the various phyla. - 2. *Protozoa:* Study of the structure, bionomica and life history of Paramaecium, Monocyotis, malarial parasite, Trypanosoma and Leishmania ### Locomotion, nutrition and reproduction in Protozoa - 3. Porifiera; Canal system, skeleton and reproduction. - 4. Coelenterata: Structure and life history of Obelia and Aurelia, polymorphism in Hydrozoa, coral formation, metagenesia, phylogenetic relationship of Cinidaria and Acnidaria - 5. *Helminths:* Structure and life History of Planaria, Fasciola, Taenia and ascaris. Parasitic adaptation, Helminths in relation to man. - 6. *Annelida:* Neries, earth work and leech; coelom and metamerism; modes of life in polychaetes. - 7. Arthropoda: Palemon, scorpion, Cockroach, larvel forms and parasitism in Crustace, mouth part vision and respiration in arthropods, social life and metamorphosis in insects. Importance of Peripatus. - 8. *Mollusca:* Unio Pila, oyster culture and pearl formation, cephalopodes. - 9. *Echinodermata*-General organisation, larval forms and affinities of Echinodermata. - General organisation and characters, outline classification and interrelationship of protochordata, Pisces, Amphibia, Reptilila, Aves and Mammalia. - 11. Neoteny and retrogressive metamorphosis. - 12. A general study of comparative account of the various systems of vertebrates. - 13. Locomotion; migration and respiration in fishes; structure and affinities of Dipnoi. - 14. *Origin of Amphibia:* distribution, anatomical peculiarities and affinities of Urodela and Apoda. - 15. Origin of Reptiles; adaptive radiation in reptiles; 'fossil reptiles; poisonous and non poisonous snakes of India; poison apparatus of snake. - 16. Origin of birds: flightless birds, aerial adaptation and migration of birds. - 17. Origin of mammals; homologies of ear ossicles in mammals; dentition and skin derivatives of mammals; distribution, structural peculiarities and phylogenetic relations of Prototheria and Methatheria. ### **Section B** ### **ECOLOGY, ETHOLOGY, BIOSTATICS AND ECONOMIC ZOOLOGY** ### **Ecology** - 1. *Environment;* Abiotic factors and their role; Biotic factors- Inter and inter-specific relations. - 2. *Animal:* Organisation at population and community levels, ecological successions. - 3. *Ecosystem:* Concept, components, fundamental operation, energy flow, biogeo chemical cycles, food chain and trophic levels. - 4. Adaptation in fresh water, marine and terrestial habitats. - 5. Pollution in air, water and land. - 6. Wild life in India and its conservation. ### **Ethology** - 7. General survey of Various types of animal behaviour. - 8. Role of hormones and pheromones in behaviour - 9. Chronobiology; Biological clock, seasonal rhythms, tidal rhythms. - 10. Neuro-endocrine control of behaviour. - 11. Parasitism, commensalism and host parasite relationship. - 12. Parasitic protozoan's helminthis and insects of man and domestic animals. - 13. Insect pests of crops and stored products. - 14. Beneficial insects. - 15. Pisiculture and induced breeding. ### Paper-II # Cell Biology, Genetics, Evolution and Systematics, Biochemistry, Physiology and ### Embryology. #### Section A Cell Biology, Genetics, Evolution and Systematics Cell Biology- Structure and function of cell and cytoplasmic constituents; structure of nucleus, plasma membrane, mitochondria, golgibodies, endo-plasmic reticulum and ribosomes, cell division; mitotic spindle and chromosome movements and meiosis. Gene structure and Function; Watson -Crick model of DNA, replication of DNA Genetic code; protein synthesis cell differentation sex chromosomes and sex determination. 2. *Genetics*- Mendelian laws of inheritance re-combination linkage and linkage maps, multiple alleles; mutation (natural and induced) mutation and evolution, meiosis, chromosome number and form, structural rearrangements; polyploidy; cytoplasmic inheritance, regulation of gene expression in prokaryotes and eukaryotes; biochemical genetics, elements of human genetics; normal and abnormal karyotypes; genes and diseases. Eugenics. 3. Evolution and systematics- Origin of life, history of evolutionary thought Lamarck and his works. Darwin and his works sources and nature of organic variation. Natural Selection, Hardy-Weinberg law, cryptic and warning colouration mimicry; isolating mechanism, and their role Insular fauna, concept of species and sub-species, principles of classification, Zoological nomenclature and international code. Fossils, outline of geological eras phylogeny of horse, elephant, camel, origin and evolution of man, principles and theories of continental distribution of animals Zoogeographical realms of the world. ### Section B ### BIOCHEMISTRY, PHYSIOLOGY AND EMBRYOLOGY - 1. Biochemistry: Structure of carbohydrates, lipids, aminoacids, proteins and nucleic acids, glycolysis and krebs cycle, oxidation and reduction, oxidative phosphorylation, energy conservation and release, ATP Cyclic AMP, saturated and unsaturated fatty acids, cholesterol, steroid hormones Types of enzymes, mechanism of enzyme action immunoglobulins and immunity, vitamins and coenzymes; Hormones, their classification, biosynthesis and functions. - 2. Physiology with special reference to mammals: composition of blood, blood groups in man, coagulation, oxygen and carbon dioxide transport haemoglobin, breathing and its regulation nephron and urine formation, acid base balance and homeostasis; temperature regulation in man, mechanism of conduction along axon and across synapes, neurotransmitters, vision, hearing and other receptors; types of muscles, ultra structures and mechanism of contraction of skeletal muscles, role of salivary gland, liver, pancreas and intestinal glands in digestion, absorption of digested food, nutrition and balanced diet of man, mechanism of action of steroid and peptide hormones, role of hypo-thalamus, pituitary thyroid, parathyroid, pancreas, adrenal testis ovary and pineal organs and their interrelationships, physiology of reproduction in humans, hormonal control of development in man and insects, pheromones in insects and mammals. Embryology: Gametogenesis, fertilization, types of eggs, cleavage, development upto gastrulation in branchiostoma, frog and chick, Fate maps of frog and chick, Metamorphosis in frog; Formation and fate of extra embryonic membrance in chick; formation of anmion allantois and types of placenta in mammals, function of placenta in mammals; organisers, Regeneration, genetic, control of development. Organogenesis of central nervous system, sense organs heart and kidney of vertebrate embryos. Aging and its implication in relation to man. ### **AGRICULTURAL ENGINEERING** ### Paper-I ### **Section-A** 1. **Soil and Water Conservation:** Scope of soil and water conservation. Mechanics and types of erosion, their causes. Rainfall, runoff and sedimentation relationships and their measurement. Soil erosion control measures – biological and engineering including stream bank protection-vegetative barriers, contour bunds, contour trenches, contour stone walls, contour ditches, terraces, outlets and grassed waterways. Gully control structures – temporary and permanent – design of permanent soil conservation structures such as chute, drop and drop inlet spillways. Watershed Management – investigation, planning and implementation – selection of priority areas and water shed work plan, water harvesting and moisture conservation. Land development – leveling, estimation of earth volumes and costing. Wind Erosion process – design to shelter belts and wind brakes and their management. Forest (Conservation) Act. 2. **Aerial Photography and Remote Sensing:** Basic characteristics of photographic images, interpretation keys, equipment
for interpretation, imagery interpretation for land use, geology, soil and forestry. Remote Sensing- merits and demerits of conventional and remote sensing approaches. Types of satellite images, fundamentals of satellite image interpretation, techniques of visual and digital interpretations for soil, water and land use management. Use of GIS in planning and development of watersheds, forests including forest cover, water resources etc. ### **Section-B** 3. **Irrigation and Drainage:** Sources of water for irrigation. Planning and design of minor irrigation projects. Techniques of measuring soil moisture – laboratory and *in situ*, soil - water plant relationships. Water requirement of crops. Planning conjunctive devices – orifices, weirs and flumes. Methods of irrigation – surface, sprinkler and drip, irrigation. Irrigation efficiencies and their estimation. Design and construction of canals, field channels, underground pipelines, head-gates, diversion boxes and structures for road crossing. Occurrence of ground water, hydraulics of wells, types of wells (tube wells and open wells) and their construction. Well development and testing. Pumps-types, selection and installation. Rehabilitation of sick and failed wells. Drainage causes of water logging and salt problem. Methods of drainage – drainage of irrigated and un-irrigated lands, design of surface, subsurface and vertical drainage systems. Improvement and utilization of poor quality water. Reclamation of saline and alkali soils. Economics of irrigation and drainage systems. Use of waste water for irrigation – standards of waste water for sustained irrigation, feasibility and economics. 4. Agricultural Structures: Site selection, design and construction of farmstead – farm house, cattle shed, dairy bam, poultry shed, hog housing, machinery and implement shed, storage structures for food grains, feed and forage. Design and construction of fences and farm roads. Structures for plant environment – green houses, poly houses and shade houses. Common building materials used in construction – timber, brick, stone, tiles, concrete etc and their properties. Water supply, drainage and sanitation system. ### **Paper-II** ### **Section-A** - Farm Power and Machinery: Agricultural mechanization and its scope. Sources of farm power animate and electro-mechanical. Thermodynamics, construction and working of internal combustion engines. Fuel, ignition, lubrication, cooling and governing system of IC engines. Different types of tractors and power tillers. Power transmission, ground drive, power take off (p.t.o) and control systems. Operation and maintenance of farm machinery for primary and secondary tillage. Traction theory. Sowing transplanting and inter-culture implements and tools. Plant protection equipment spraying and dusting. Harvesting, threshing and combing equipment. Machinery for earth moving and land development methods and cost estimation. Ergonomics of man-machine system. Machinery for horticulture and agro-forestry, feeds and forages. Haulage of agricultural and forest produce. - 2. **Agro-energy:** Energy requirements of agricultural operations and agro-processing. Selection, installation, safety and maintenance of electric motors for agricultural applications. Solar (thermal and photo-voltoic), wind and bio-gas energy and their utilization in agriculture. Gasification of biomass for running IC engines and for electric power generation. Energy efficient cooking stoves and alternate cooking fuels. Distribution of electricity for agricultural and agro-industrial applications. ### **Section-B** 3. **Agricultural Process Engineering:** Post harvest technology of crops and its scope. Engineering properties of agricultural produces and by-products. Unit operations – cleaning grading, size reduction, densification, concentration, drying/dehydration, evaporation, filtration, freezing and packaging of agricultural produces and by-products. Material handling equipment – belt and screw conveyors, bucket elevators, their capacity and power requirement. Processing of mild and dairy products - homogenization, cream separation, pasteurization, sterilization, spray and roller drying, butter making, ice cream, cheese and shrikhand manufacture. Waste and byproduct utilization – rice husk, rice bran, sugarcane bagasse, plant residues and coir pith. 4. Instrumentation and computer applications in Agricultural Engineering: Electronic devices and their characteristics – rectifiers, amplifiers, oscillators, multivibrators. Digital circuits – sequential and combinational system. Application of microprocessors in data acquisition and control of agricultural engineering processes – measurement systems for level, flow, strain, force, torque, power, pressure, vacuum and temperature. Computers – introduction, input/output devices, central processing unit, memory devices, operating systems, processors, keyboards and printers. Algorithms, flowchart specification, programme translation and problem analysis in Agricultural Engineering. Multimedia and Audio-Visual aids. ### **CHEMICAL ENGINEERING** **PAPER-I** Section-A (a) Fluid and Particle Dynamics Viscosity of fluids. Laminar and turbulent flows. Equation of continuity and Navier-Stokes equation-Bernoulli's theorem. Flow meters. Fluid drag and pressure drop due to friction, Reynolds Number and friction factor – effect of pipe roughness. Economic pipe diameter. Pumps, water, air/steam jet ejectors, compressors, blowers and fans. Agitation and mixing of liquids. Mixing of solids and pastes. Crushing and Grinding – principles and equipment. Rittinger's and Bond's laws. Filtration and filtration equipment. Fluid-particle mechanics – free and hindered setting. Fluidisation and minimum fluidization velocity, concepts of compressible and incompressible flow. Transport of solids. ### (b) Mass Transfer Molecular diffusion coefficients, First and second law and diffusion, mass transfer coefficients, film and penetration theories of mass transfer. Distillation, simple distillation, relative volatility, fractional distillation, plate and packed columns for distillation. Calculation of theoretical number of plates. Liquid-liquid equilibria. Extraction – theory and practice; Design of gas-absorption columns. Drying. Humidification, Dehumidification. Crystallisation. Design of equipment. ### (c) Heat Transfer Conduction, thermal conductivity, extended surface heat transfer. Convection – free and forced. Heat transfer coefficients – Nusselt Number. LMTD and effectiveness. NTU methods for the design of Double Pipe and Shell & Tube Heat Exchangers. Analogy between head and momentum transfer. Boiling and condensation heat transfer. Single and multiple-effect evaporators. Radiation – Stefan-Boltzman Law, emissivity and abnsorptivity. Calculation of head load of a furnace. Solar heaters. #### **Section-B** ### (d) Noval Separation Processes Equilibrium separation processes – ion-exchange, osmosis, electrodialysis, reverse osmosis, ultra-filtration and other membrane processes. Molecular distillation. Super critical fluid extraction. ### (e) Process Equipment Design Factors affecting vessel design criteria – Cost considerations. Design of storage vessels-vertical, horizontal spherical, underground tanks for atmospheric and higher pressure. Design of closures flat and elliptical head. Design of supports. Materials of construction-characteristics and selection. ### (f) Process Dynamics and Control Measuring instruments for process variables like level, pressure, flow, temperature pH and concentration with indication in visual/pneumatic/analogue/digital signal forms. Control variable, manipulative variable and load variables. Linear control theory-Laplace, transforms, PID controllers. Block diagram representing transient and frequency response, stability of closed loop system. Advanced control strategies. Computer based process control. ### Paper-II ### **Section-A** ### (a) Material and Energy Balances Material and energy balance calculations in processes with recycle/bypass/purge. Combustion of solid/liquid/gaseous fuels, stoichiometric relationships and excess air requirements. Adiabatic flame temperature. ### (b) Chemical Engineering Thermodynamics Laws of thermodynamics. PVT relationships for pure components and mixtures. Energy functions and inter-relationships – Maxewell's relations. Fugacity, activity and chemical potential. Vapour-liquid equilibria, for ideal/non-ideal, single and multi-component systems. Criteria for chemical reaction equilibrium, equilibrium constant and equilibrium conversions. Thermodynamic cycles – refrigeration and power. ### (c) Chemical Reaction Engineering Batch reactors – kinetics of homogeneous reactions and interpretation of kinetic data. Ideal flow reactors – CSTR, plug flow reactors and their performance equations. Temperature effects and run-away reactions. Heterogeneous reactions – catalytic and non-catalytic and gas-solid and gas-liquid reactions. Intrinsic kinetics and global rate concept. Importance of interphase and intraparticle mass transfer on performance. Effectiveness factor. Isothermal and non-isothermal reactors and reactor stability. ### **Section-B** ### (d) Chemical Technology Natural organic products - Wood and wood-based chemicals, pulp and paper, Agro industries – sugar, Edible oils extraction (including tree based seeds). Soaps and detergents. Essential oils – Biomass gasification (including biogas). Coal and coal chemical. Petroleum and Natural gaspetroleum refining (Atmospheric distillation/cracking/reforming) – Petrochemical industries – Polyethylene's (LDPE/HDPE/LLDPE), Polyvinyl Chloride, Polystyrene. Ammonia manufacture. Cement and lime industries. Paints and varnishes. Glass and ceramics. Fermentation – alcohol and antibiotics. ### (e) Environmental Engineering and Safety Ecology and Environment. Sources of pollutants in air and water. Green house effect, ozone layer depletion, acid rain.
Micrometeorology and dispersion of pollutants in environment. Measurement techniques of pollutant levels and their control strategies. Solid wastes, their hazards and their disposal techniques. Design and performance analysis of pollution control equipment. Fire and explosion hazards rating – HAZOP and HAZAN. Emergency planning, disaster management. Environmental legislations – water, air environment protection Acts. Forest (Conservation) Act. ### (f) Process Engineering Economics Fixed and working capital requirement for a process industry and estimation methods. Cost estimation and comparison of alternatives. Net present value by discounted cash flow. Pay back analysis. IRR, Depreciation, taxes and insurance. Break-even point analysis. Project scheduling - PERT and CPM. Profit and loss account, balance sheet and financial statement. Plant location and plant layout including piping. ### **ELECTRICAL ENGINEERING** ### Paper-I Network: Steady state analysis of d.c and a.c networks, network theorems, Matrix Algebra, network functions transient response frequency response, Laplace transform, Fourier series and Fourier transform, frequency spectral polezero concept, elementary network synthesis. Statics and Magnetics: Analysis of electrostatic and magnetostatic fields: Laplace and Poisson Equations, solution of boundary value problems. Maxwell's equations, electromagnetic wave propagation, ground. and space waves, propagation between earth station and satellites. #### Measurements: Basic methods of measurements, standards, error analysis, indicating instruments cathode ray oscilloscope; measurement of voltage current, power, resistance, inductance, capacitance, time, frequency and flux; electronic meters. ### Electronics: Vacuum and semiconductor devices: equivalent circuits transistor parameters, determination of current and voltage gain input and output impedances biasing technique, single and multistage, audio and radio small signal and large signal amplifiers and their analysis, feedback amplifiers and oscillators: wave shaping circuits and time base generators, analysis of different types of multivibrator and their uses; digital circuits. ### **Electrical Machines:** Generation of e.m.f. —m.m. f and torque in rotating machines, motor and generator characteristics of d.c. synchronous and induction machines equivalent circuits, commutation parallel operation; phasor diagram and equivalent circuits of power transformer, determination of performance and efficiency, autotransformers, 3-phase transformers. ### Paper-II #### **SECTION A** ### **Control Systems** Mathematical modelling of dynamic linear control systems, block diagrams and signal flow graphs, transient response steady state error, stability, frequency response techniques, root-locus techniques series compensation. ### Industrial Electronics Principles and design of single phase and polyphase rectifiers controlled rectification, smoothing filters; regulated power supplies, speed control circuits for drivers, inverters, a.c. to d.c. Conversion, Choppers; timers and welding circuits. ### **SECTION B** ### (Heavy currents) #### **ELECTRICAL MACHINES** Induction Machines - Rotating magnetic field; poly phase, motor, principle of operation; Phasor diagram; Torque slip characteristic; Equivalent circuit and determination of its parameters; circle diagram; starters; speed control double cage motor; induction generator; Theory; Phasor diagram, characteristics and application of single phase motors. Application of two phase induction motor. Synchronous Machines - e.m.f. equation phasor and circle diagrams operation on infinite bus: synchronizing power, operating characteristic and performance by different methods; sudden short circuit and analysis of oscillogram to determine machine reactances and time constants, motor characteristics and performance methods of starting application. Special machines-Amplidyne and metadyne operating characteristics and their applications. Power Systems and Protection - General layout and economics of different types of power stations; Baseload, peakload and pumped storage plants; Economics of different systems of d.c and a.c power distribution. Transmission line parameter calculation; concept of G.M.D. short, medium and long transmission line; insulators, voltage distribution in a string of insulators and grading; Environmental effects on insulators. Fault calculation by symmetrical components; load flow analysis and economic operation; steady state and transient stability; Switch-gear Methods of arc extinction; Restriking and recovery voltage; testing of circuit breaker, Protective relays; protective schemes for power system equipment; C.T. and P.T. Surges in transmission lines; Traveling waves and protection. Utilisation - Industrial drives electric motors for various drives and estimates of their rating; Behaviour of motor during starting acceleration, braking and reversing operation; Schemes of speed control for d.c and induction motors. Economic and other aspects of different systems of rail traction; mechanics of train movement and estimation of power and energy requirements and motor rating characteristics of traction motors, Dielectric and induction heating. ### **SECTION C (Light Currents)** Communication Systems - Generation and detection of amplitude - frequency phase and pulse modulate signals using oscillators, modulators and demodulators, Comparison of. modulated systems, noise, problems, channel efficiency sampling theorem, sound and vision broadcast transmitting and receiving system, antennas, feeders and receiving circuits, transmission line at audio radio and ultra high frequencies. Microwaves - Electromagnetic wave in guided media, wave guide components cavity resonators, microwaves tubes and solid state devices; Microwave generators and amplifiers, filters microwave measuring techniques microwave radiation pattern, communication and antenna systems, Radio aids to navigation. D.C. Amplifiers - Direct coupled amplifiers, difference amplifiers, choppers and analog computation. ### **CIVIL ENGINEERING** ### Paper I ### A. Theory and Design of Structure a. Theory Structures: Energy theorems Castrigliano I theorems I and II: Unit load method and method of consistent deformation to beams and pinjointed plane frames. Slope deflection, Moment distribution and Kani methods of analysis applied to indeterminate beams and rigid frames. Moving loads: Criteria for maximum sheer force and bending moment in beams traversed by a system of moving loads influence lines for simply supported plane pinjointed, girders. *Arches*: Three hinged, two hinged and fixed arches rib. Shortening and temperature effects. Influence lines. *Matrix:* Methods of analysis. Force method and displacement method. b. Structural Steel: Factors of safety and load factors. Designs of tension and compression members. Beams of built up section, riveted and welded plate girders. Gantry girders. Stanchions with battens and facing, Slab and gusseted bases. Design of Highway and Railway Bridges: Through and deck type plate girder. Warren girder and Pratruss. c. Reinforced concrete, Limit state, method, design. Recommendations of IS codes. Design of one way and two way slabs, staircase slabs, simple and continuous beams of rectangular T and L sections. Compression members under direct load with or without accentricity fottings isolated and combined. Retaining walls, Cantilever and counterfort types. Methods and systems of prestressing. Anchorages Analysis and design of sections for flexure, loss of prestress ### (B) FLUID MECHANICS Fluid properties and their role in fluid motion, fluid statics including forces acting on plane and curved surfaces. Kinematics and Dynamics and fluid flow velocity and accelerations, stream lines equation of continuity ir-rotational and rotational flows velocity potential and stream function, flow nets and methods of drawing flow net sources and sinks flow separation and stagnation. Euler's equation of motion, energy and momentum equation and their application to pipe flow free and forced vortices, plane and curved stationary and moving vanes sluice gates weirs otieive meters and venturimeters. Dimensional Analysis and similitude, Buckingham's Pi theorem similarities models laws undistorted and distorted models movable bed models model calibration. Laminar Flow: Laminar flow between parallel stationary and moving plates, flow through tube Reynolds experiments lubrication principles. Boundary Layers: Laminar and turbulent boundary Layer on a flat plate laminar sub layer smooth and rough boundaries drag and lift. Turbulent Flow Through Pipes: Characteristics of turbulent flow, velocity distribution and variation of friction factor, hydraulic grade line and total energy line siphons expansions and contractions in pipes, pipe networks water hammer. Open Channel flow Uniform and non-uniform flows specific energy and specific force critical depth, resistance equations and variation of roughness coefficient. Rapidly varied flow, flow in contractions, flow at sudden drop, hydraulic jump and its applications, surges and waves, Gradually varied flow differential equation for gradually varied flow classification of surface profiles control section step method of integration of varied flow equation. ### (C) SOIL MECHANICS AND FOUNDATION ENGINEERING Soil composition influence of clay minerals on engineering behaviour. Effective stress principles, change in effective stress due to water flow condition Static water table and steady flow conditions. Permeability and compressibility of soils. Strength behaviour, strength determination through direct and triaxial tests Total and effective stress strength parameters Total and effective stress paths. Methods of site exploration, planning a sub-surface exploration programme sampling procedures and sampling disturbance. Penetration tests and plate load tests and data interpretation. Foundation types
and selection. Footings, rafts, piles, floating foundations, effect of footing shapes, dimensions, depth of embedment load inclination and ground water on bearing capacity. Settlement components. Computation for immediate and consolidation settlements limits on total and differential settlement correction for rigidity. Deep foundations, philosophy of deep foundations, piles, estimation of individual and group capacity. Static and dynamic approaches. Pile load tests, separation into skin friction and point bearing under-reamed piles. Well foundations for bridges and aspects of design. Earth pressure, states of plastic equilibrium. Cullman's procedure for determination of lateral, thrust determination of anchor force and depth of penetration. Reinforced earth retaining walls concept, Materials and applications. Machine foundations, Modes of vibrations. Determination of natural frequency, Criteria for design. Effect of vibration on soils. Vibration isolation. ### (D) COMPUTER PROGRAMMING Types of computers - components of computers, history and development different languages. Fortran/Basic programming constant variables expressions arithmetic statements library functions control statements unconditional GO-TO statements computed GO-TO Statements IF and DO statements CONTINUE CALL RETURN STOP END Statements 1/0 Statements FORMATS field specifications. Subscripted variables arrays DIMENSION statement function and sub routine sub-programmes application to simple Problems with flow charts in Civil Engineering. ### Paper- II **Note:**— Candidate shall answer questions from any two parts. ### **PART A** ### **BUILDING CONSTRUCTION** Physical and mechanical properties of construction materials factors influencing selection brick and clay products limes and cements polymeric materials and special uses, damp proofing materials. Bickward for walls type cavity walls design of brick masonry walls as per LS code factors of safely serviceability and strength requirements detailing of walls floors roofs ceiling finishing of building plastering pointing painting. Functional planning of buildings orientation of buildings elements of fire proof construction repair to damaged and cracked buildings use of teno cement, more reinforced and polymer concrete in construction techniques and materials for low cost housing. Building estimates and specifications construction scheduling PERT and CPM methods. ### **PART B** ### TRANSPORTATION ENGINEERING Railway: Permanent way ballast sleeper, fastenings points and, crossing different types or turn outs cross-over. Setting out of points. Maintenance of track super-elevation creep of rail ruling gradients trick resistance, tractive effort, curve resistance. Station yards and machinery, Station building platform siding cum tables signals and interlocking level crossings. Roads and Railways, Traffic engineering and traffic surveys, Intersections, road signs signals and marking. Classification of roads, planning and geometric design. Design of flexible and rigid pavements. Indian Roads congress Guidelines on pavement, layers and design methodologies. ### **PART C** ### WATER RESOURCE AND IRRIGATION ENGINEERING Hydrology: Hydrologic cycle, precipitation, evaporation, transpiration depression, storage, infiltration, hydrograph unit, hydrograph frequency analysis, flood estimation. Ground water flow, Specific yield, storage coefficient, coefficient of permeability. Confined and unconfined aquifers. Radial flow into a well under confined and unconfined conditions. Tubewells pumping and recuperation tests. Ground water potential. Water resources planning. Ground and surface water resources single and multipurpose projects. Storage capacity of reservoirs, reservoir losses, reservoir sedimentation, flood routing through reservoirs. Economics of water resources projects. Water requirements for crops, consumptive use of water. Quality of irrigation water, duty and delta, Irrigation methods and their efficiencies. Canals: Distribution system for canal irrigation, Canal capacity, canal losses, Alignment of main and distributory canals. Most efficient section, lined channels their design, regime theory, Critical shear stress bed load. Local and suspended load. Transport cost. Analysis of lined and unlined canals. Drainage behind lining. Water Logging: Causes and control, Drainage system. Design salinity. Canal structures: Design of regulation, cross drainage and communication works, cross regulators, head regulators, canal falls, aqueducts, metering, flumes and outlets. Diversion head works, Principles of design of weirs on permeable and impermeable foundations. Khosla's theory Energy dissipation. Stilling basins, sediments exclusion. Storage Works, Types of dams design. Principles of rigid gravity and earth dams stability analysis foundation treatment joints and galleries. Control of seepage construction methods and machinery. *Spillways:* Types, crest, gates, energy Dissipation River training, objectives of river training. Methods of river training. #### PART-D #### **ENVIRONMENTAL ENGINEERING** Water supply: Estimation of water resources, ground and surface water. Ground water hydraulic, predicting demand of water. Impurities of water and their significance. Physical chemical and bacteriological analysis, water borne diseases. Standards for portable water. Intake of water, Pumping and gravity schemes. Water treatment Principles of coagulation flocculation and sedimentation. Slow rapid pressure, biflow and multi-media filters, chlorination, softening, removal of taste odour and salinity. Water storage and distribution. Storage and balancing reservoirstypes location and capacity. Distribution systems: Layout hydraulics of pipelines. Pipe fittings valves including check and pressure. Reducing valves meters analysis of distribution systems using Hardy Cross Method General principles of optimal, design based on cost headloss ratio criterion. Leak detection maintenance of distribution systems pumping stations and their operations. Sewerage systems: Domestic and industrial wastes, storm sewage, separate and combined systems flow through sewers. Design of sewers, sewer appurtenances. Manholes inlets. Junctions syphon. Sewage characterisation. BOD COD solids. Dissolved oxygen, nitrogen and TOS, Standards of disposal in normal water course and on land. Sewage treatment: Working principles, Units chambers sedimentation tank, trickling, filters, oxidation ponds, activated sludge process septic tank disposal of sludge. Recycling of waste water. Solid Waste: Collection and disposal. Environmental pollution. Ecological balance. Water pollution control acts. Radio active wastes and disposal. Environmental impact. Assessment for thermal power plants, mines. Sanitation: Site and orientation of buildings. Ventilation and damp proof courses. House drainage. Conservancy and water born system of waste disposal. Sanitary appliances, latrines and urinals. Rural sanitation. ### **MECHANICAL ENGINEERING** ### Paper-I Statics:- Equilibrium in three dimensions suspension cables. Principle of virtual work. *Dynamics:-* Relative motion coriolis force Motion of a rigid body. Gyroscopic motion impulse. Theory of Machines:- Higher and lower parts inversions, steering mechanisms, Hooks joint, velocity and acceleration of links, inertia forces. Cams Conjugate action of gearing and interference, gear trains epicyclic gears, Clutches, belt drives, brakes, dynamometers, Flywheels Governors. Balancing of rotating and reciprocating masses and multicylinder engines. Free, forced and damped vibrations for a single degree of freedom. Degree of freedom. Critical speed and whirling of shafts. Mechanics of solids:- Stress and strain in two dimensions. Mohr's circle. Theories of failure, Deflection of beams. Buckling of columns. Combined bending and torsion. Castiglapo's theorem. Thick cylinders Rotating disks, Shrink fit. Thermal Stresses. Manufacturing Science:- Merchants theory Taylors equation Machineability. Unconventional machining methods including EDM, ECM and ultrasonic machining. Use of lasers and plasms. Analysis of forming process. High velocity forming. Explosive forming. Surface roughness, gauging comparators jigs and Fixtures. Production management:- Work simplification, work sampling, value engineering, Line balancing, work station design, storage space requirement, ABC analysis, Economic order, quantity including finite production rate. Graphical and simplex methods for linear programming; transportation model, elementary queing theory. Quality control and its uses in product design. Use of X,R,P (Sigma) and C charts. Single sampling plans, operating characteristics curves, Average sample size. Regression analysis. ### Paper-II Thermodynamics:- Applications of the first and second laws of thermodynamics. Detailed analysis of thermodynamics cycles. Fluid Mechanics:- Continuity momentum and energy equations. Velocity distribution in laminar and turbulent flow. Dimensional analysis. Boundary layer on a flat plate. Adiabatic and isentrophic flow. Mach number. Heat transfer:- Critical thickness of insulation conduction in the presence of heat sources and sinks. Heat transfer from fins. One dimensional unsteady conduction Time constant for thermocouples. Momentum and energy equations for boundary layers on a flat plate. Dimensionless numbers Free and Forced convection Boiling and condensation nature of radiant heat. Steafan- Boltzmann Law, Configuration factor logarithmic mean temperature difference. Heat exchanger effectiveness and number of transfer units. Energy Conversion:- Combustion phenomenon in C.I. and S.I. engines Carburetion and fuel injection. Selection of pumps, classification of compressor Analysis of steam and gas turbines. High pressure boilers. Unconventional power systems. including Nuclear power and MHD systems. Utilisation of solar energy. Environmental control:- Vapour compression, absorption, steam jet and air
refrigeration systems. Properties and characteristics of important refrigerants. Use of psychrometric chart and comfort chart, estimation of cooling and heating loads. Calculation of supply air state and rate. Air conditioning plants layout. # COMPUTER ENGINEERING PAPER-I ### **Digital Electronics** Introduction to number System and their conversions. Arithmatic with bases other than ten. Boolean Algebra and Simplification of Boolean expressions. Standard form of Boolean functions, Minterm Maxterm designation of functions, Combinational Circuits. Introduction to switching devices, positive and negative logic of OR. AND, NOR, NAND, Exclusive OR and Exclusive NOR gates, IC digital logic families. Simplification of function by Karmaugh maps, Quine McCluskey tabular methods for simplification of Boolean function and determination of prime implicants Selection of an optimal set of prime implicants, multiple output circuits and map minimization of multiple output circuits; General characteristics of sequential circuits. Clock, pulls and level mode sequential circuits. Analysis and design of a sequential circuit. ### **Programming Languages** Structured programming and object oriented programming. Abstraction, encapsulation, data hiding, Polymorphisim, Scope rules, Parameter passing, run time environment, Static and dynamic storage management, garbage collection, exception handling, task and concurrency in programming language like C, C++, JAVA Concepts of 4GL. ### **Data Structure and Algorithms** Elementary and structured data types, Lineur Structures: Arrays and Records, Stacks, Queues and Linked Lists, Strings Prefix, Postifix, infix expressions. Non linear structures: generalized linked list, trees, graphis and their traversals, trie and dictionary. Built in Data structures such as Records, Files Sets, Graphs and Pointers. Recurssion, Sorting-Internal and External, Searching, Hashing, Symbol Tables. Problem solving and algorithms development and analysis. ### **Computer Architecture** Processor Organization, Instruction fetch and executic cycles, information representation, Number formats and their representation in memory. Common addressing techniques, instruction types. Arithmetic operations and their implementations. Memories types: characteristics and organization. System modeling, Design levels. Register level design, Description language, Processor level design, Design Techniques. Instruction Sequencing and interpretation hardwired controls and its implementation concepts, microprogrammed control conversional and unconversional microprogrammed control computers. ### **Data Base Management System** Need, Purpose and Goals of DBMS. Physical and Logical data bases, data abstraction and data independence, data aggregation, data models: ER and object Oriented Models, Introduction to relational model, relation algebra, theory of normalization. SQL. Physical data organization in sequential, Indexed, Random and Hashed files. Inverted and multilist structures, B+ Trees. Transaction processing, concurrency, control, recovery management and database security, Transaction model properties and state serializability. Lock based protocols. Deadlock prevention and detection. Introduction to Distributed DBMS ### **PAPER-II** ### **System Programming and Operating System** Concept of machines and assembly language programming, representation of instruction and data, assemblers and macro assemblers. Introduction to Operating System; Operating System Services and Kernael. Multiprogramming & Time Sharing, Memory Management, Paging and Segmenting. Input Output and Device Management, Disk and File Management. Deadlocks and concurrent processes. Protection and security. Introduction to multiprocessors and distributed operating systems. Case studies of UNIX and WINDOWS operating systems. ### Theory of Computation and Compile Design Introduction to Automata Theory, Language, regular expression, finite automata, transition graph, non determinism, Push Down Automata Theory, context free grammars, trees, regular grammars, context-free languages. Introduction to compliers, translators and interpreters, compilation process. Lexical and Syntactical analysis. Top Down and Bottom up parsing, syntax directed translation. Symbol tables organizations: Hashing, Linked List, Tree structures Code generation: Compilation of expressions and control structures. Error detection and recovery. Code optimization: Optimizing transformation, local and global optimization. ### **Computer Networks** Data communication Fundamentals, Computer Network, Architecture, Packet and circuit switching. Functions and working of OSI layers Satellite and packet radio network. Local area network Internet working and ISDN/B-ISDN. Network Protocols: Ethernet, TCP/IP. Network management and Interoperability. Performance issues of LAN and WAN. ### **Software Engineering** Introduction to Software Engineering, Requirement Engineering. Structural System Design, Data Oriented analysis and Design, Object Oriented Analysis and Design, Software Quality Assurance. User interface design, Software complexity and reliability. Software project management. ### **Computer Graphics** Introduction to interactive computer graphics, picture analysis overview of programmer's model of interactive graphics. Fundamental problems in geometry. Basic Raster Graphics: Scan Conversion, filling and clipping. Geometric manipulations: Transformation, Matrices and homogeneous coordinates. Elementary 3-D graphics, plane projections, vanishing points, specification of 3-D view. Visibility, image and object precision, z-buffer algorithms, area based algorithms, floating horizon. Curves and surfaces: parametric representation, Bezer and B-spline curves. Rendering: Ray tracing, antialiasing, Gourard and Phong Shading. ### **Electronics Engineering** ### **PAPER-I** # **BASIC ELECTRONICS-MATERIALS AND DEVICES Materials and Components:** Structure and properties of Electrical Engineering materials, Conductors, Semiconductors and Insulators, magnetic, Ferroelectric, Piezoelectric, Ceramic, Optical and Super conducting materials Passive components and characteristics Resistors, Capacitors and Inductors, Ferrites, Quartz crystal, Ceramic resonators, Electromagnetic and Electromechanical components. ### **Physical Electronics, Electron Devices and ICS:** Electrons and holes in semiconductors, Carrier Statistics, Mechanism of current flow in a semiconductor, Hall effect; Junction theory; Different types of diodes and their characteristics; Bipolar Junction transistor; Field effect transistors; Basics of IC's-bipolar, MOS and CMOS types, basic of Opto-electronics. IC Technologies: Fabrication techniques Basic CMOS VLSI, Full custom VLSI design, Inverter analysis, layout rules, layout of basic gates, circuit extraction, Layout of basic data path. ### **ELECTRONICS CIRCUITS AND APPLICATIONS** ### **Analog Electronic Circuits:** Transistor biasing, bias stabilization and Small signal and frequency response analysis of circuits. Power amplifiers. Feedback amplifiers, Tuned amplifiers, Wide-banding techniques. Transistor oscillators. Diode rectifiers, regulators and power supplies. Operational Amplifiers, Phase Locked Loops and other linear integrated circuits with applications. Pulse shaping circuits and waveform generators. ### **Industrial Electronics:** Thyristor family, principle of operation, commutation circuits Controlled rectifiers, single phase and three phase with different loads. DC choppers: step-up and step-down choppers, chopper circuits, switched mode regulators, effect of source and load inductance. Cyclo-converters: Single and three phase cyclo-converters. Inverter circuits: Single phase bridge inverters, three phase inverters, voltage control of three phase inverter, harmonic reduction. Industrial applications: Induction and dielectric heating, Basic concepts of speed control of DC/AC drives. ### SIGNALS AND SYSTEMS ### Signals and Systems: Classification of signals and systems: System modeling in terms of differential and difference equations; Vaveform generators. A/D and D/A converters. Semi conductor memories. Digital design-POS, SOP minimization, PAL and PLAS, PLDs, FPGA **Sequential machine design:** Mealy and Moore machines, Asynchronous machines-Analysis and design: Races and Hazards. **Microprocessors:** Architecture and instruction set of Microprocessor 8085 and 8086, Assembly language Programming. Microprocessor based system design: typical examples, PLCs. Personal computers and their typical uses. ### **COMMUNICATION SYSTEMS:** Random signals and probability, Correlation functions; Spectral density; Response of linear system to random inputs. Basic Information theory. Sampling, quantisation and introduction to coding techniques. **Analog Modulation and demodulation techniques:** AM, FM and PM, Radio broadcast transmitters and receivers. **Digital modulation and demodulation techniques, data recovery:** Integrator, matched filters, correlation receivers and their error probability analysis. Time division and frequency division multiplexing. Equalization. **Telephone networks:** Modern telephone exchanges, switching techniques. Elements of Mobile communication. Satellite Communication, Multiple access techniques-FDMA, CDMA. ### **ELECTROMAGNETICS AND MICROWAVE ENGINEERING** ### **Electromagnetic Theory:** Analysis of electrostatic and magnetostatic fields; Laplace's and Poisson's equations. Boundary value problems and their solutions; Maxwell's equations. Wave propagation through bounded and unbounded media. ### **Transmission lines:** Basic theory, standing waves, stub matching techniques. Microstrip lines. Propagation of signals at HF, VHF, UHF and microwave frequency. Elements of antenna theory. # **Microwave Engineering:** Analysis of Microwave Tubes, solid state microwave devices and their applications. Analysis of waveguides (rectangular and cylindrical). Microwave Components and
Circuits. Micro strip circuits. Microwave Measurements. Microwave Antennas. # **Optical Communication:** **Basics of optical fibre:** Numerical aperture, cone of acceptance, rectilinear and curvilinear propagation of light waves through fibre single mode and multi- mode propagation, Optical fibre as a cylindrical wave guide, dispersion and attenuation, splicing techniques, fibre losses, link length calculations, Optical sources and amplifiers, optical detectors, dispersion management in optical fibres. Microwave Communication Systems (terrestrial and Satellite based) variable representation and solution of state of variable equations for continuous and discrete items. Fourier series, Fourier transforms, properties and their applications to system analysis, **Laplace transform:** properties and its application to system analysis. Convolution integral, superposition integral and their applications. **Z-transform:** properties and its applications to the analysis and characterisation of discrete time systems. Discrete time signals and systems, System Classification, stability, DTFT, DFT, FFT algorithms: Decimation in time and frequency. Linear and circular convolution. Designing of Digital filters - FIR and IIR filters, Butterworth and Chebycheff filters. #### **Network theory:** Network analysis techniques: Network theorems, transient and sinusoidal steady state response. Network graphs and their applications in network analysis; Tellegen's theorem. Two port networks; Z, Y, h and transmission parameters. Analysis of two port networks, Network functions, parts of network functions, obtaining a network function from a given part. **Transmission criteria:** delay and rise time, Elmore's and other definitions, effect of cascading. Elements of one-port and two-port network synthesis. #### INSTRUMENTATION AND CONTROL #### **Electronic Measurements and instrumentation:** Basic concepts, standards and error analysis; Measurements of basic electrical quantities and parameters. Analog and digital electronic measuring instruments, their principles of working their comparison, characteristics and applications. **Transducers:** Electronic measurements of non-electrical quantities like temperature, pressure, humidity. Basics of telemetry for industrial use. #### **Control Systems:** Transient and steady state analysis of systems. Block diagram reduction and signal flow graphs, Mason's gain formula. Effect of feedback on the performance of systems. Absolute and relative stability of systems. #### Frequency response analysis: Bode diagram. Root Locus, Principle of argument and Nyquist criteria. Constant-M and Constant-N Loci, Nichol's Chart. Stability analysis of continuous time systems with respect to the state space model and Jury's stability criterion for the stability of discrete time systems. #### PAPER-II #### **DIGITAL ELECTRONICS AND MICROPROCESSORS:** Transistor as a switching element, Boolean algebra, Number theory. Simplification of Boolean functions, Karnaugh maps and applications. IC Logic gates and characteristics. IC logic families: DTL, TTL, ECL, NMOS, PMOS and CMOS gates and their comparison. **Combinational logic Circuits:** Half adder, Full adder; Digital comparator; Multiplexer, De-multiplexer; ROM and their applications and Design. Flip flops. R-S, J-K, D and T flip-flops; Different types of counters and registers, Design using flip flops. # Data structures and computer algorithms: Electronics Engineering MPSC, Maharashtra Public Service Commission Electronics Engineering Exam Data representation, Programming, Elements of a high level programming language C. Use of data structures such as stacks, queues, linked lists, trees and graphs. Algorithms for insertion and deletion of elements in these data structures. Complexity of algorithms, sorting and searching techniques, Spanning trees, shortest path. Knapsack problem, Traveling sales person's problem, NP-Hard, NP-Complete. Design techniques (Greedy/Dynamic programming/ Divide and conquer). # **Computer Organization:** Fundamentals of computer architecture. Processor design; Control unit design. Memory organization, I/O System Organization. Advanced architectures- Parallel processing. #### **Computer Networks:** ISO/OSI model, packet switching, congestion in communication Sliding window protocol. LAN technologies (Ethernet/UDP), TCP, Internet Protocol. Basic concepts of switches, gateways and routers, Internet technologies. Network security. #### HORTICULTURE #### **PAPER-I** Fruit Industry in India and its potential General principles of cultivation. Method of propagation. Physiological basis of rooting Special plant growing structures - mist propagation, green house and glass house Promising root stocks for fruit crops Plant growth regulators, retardants and inhibitors relating to flowering, sex expression, fruit set, fruit development and ripening. Dormancy and rest and rest period. Pollination and fruit set Growth and fruiting habits of fruits and nut species. Parthenocarpy Orchard management practices, manure and manuring, irrigation, training and pruning high density planting. Fruit thinning and fruit drop. Origin history, pomological description, climatic requirements and production techniques of important temperate, sub tropical and tropical fruit crops. Important pests, diseases and physiological disorders and their management Integrated management of pests and diseases. Harvesting and harvest maturity indices. Handling and marketing problems of major fruits. Special problems of production. Principal methods of preservation. Important fruit and vegetable products. Processing techniques and equipments. Wastes from processing factory and their impact on environment. By-products and utilization. Nutritive value of fresh and processed fruits and vegetables. Standards of fruit and vegetable products. Economic principles in fruit and vegetable production. Use of planning and budgeting techniques. Efficiency measures of orchard management. Extension education and its importance. Methods of evaluation of extension programmes. Socio-economic survey and status of different categories of farmers. Training programmes for extension workers. Lab to field and TV programmes #### PAPER-II Importance, nutritive value and classification of vegetables. Types of vegetable gardening. Principle of vegetables, cultivation including nursery management. Climatic requirement and cultivation of major summer and winter vegetable crops. Off-season vegetable production. Diseases and pests of vegetable crops and measures to control. Weeds, their characteristics and association with various vegetable crops. Principles of plant breeding in the improvement of major vegetable crops. Methods of breeding of sell, cross-pollinated and vegetatively propagated crops. Seed technology and its importance. Production, processing, testing and marketing of vegetable seeds. Plant physiology and its significance. Growth and development factors affecting growth. Absorption and translocation of water transpiration and water economy. Modern concepts of photosynthesis and respiration. Processes and factors of soil formation. Mineral and organic constituents of soil and their role in maintaining soil productivity. Plant nutrient elements in soils and their availability. Nitrogenous, phosphatic potassic and micronutrient fertilizers and their use. Problem soils and their reclamation. Water conservation watershed management. Water use efficiency in relation to crop production. Criteria for scheduling production, ways and means of reducing run off losses. Importance and scope of floriculture, landscaping and interior-scaping. History, theory and principles of landscape, planting and lawns. Beautification of slopes, forests and wastelands. Layout of home gardens and public parks. Propagation of ornamentals. Cultural requirement of ornamental trees, shrubs, climbers, bulbs and annuals for winter and summer season. Production technology and post harvest management of cut flowers, bulls, house plants and bedding plants. # COMPUTER APPLICATION/SCIENCE # **PAPER-I** #### Introduction to Computing Number Systems, Binary numbers, Boolean logic, History Computer system, basic machine organization, Von Neumann Architecture, Algorithm definition, design, and implementation, Programming paradigms and Languages, Graphical programming, Overview of Software Engineering and Information Technology, Operating system, Compiler, Computer networks and Internet, Computer graphics, Al, Social and legal issues. #### **Programming Solving Techniques** Algorithms and problem solving, development of basic Algorithms, analyzing problem, designing solution, testing designed solution, fundamental programming constructs, translation of algorithms to programmes, data types, control structures, functions, arrays, records, files, testing programmes. #### **Computer Communications & Networks** Analogue and digital Transmission, Noise, Media, Encoding, Asynchronous and Synchronous transmission, Protocol design issues, Network System architecture (OSI, TCP/IP), Error control, Flow Control, Data Link Protocols (HDLC,PPP). Local Area Networks and MAC Layer protocols (Ethernet, Token ring). Multiplexing, Switching and IP Networks, Internetworking. Routing, Bridging, Transport layer protocols TCP/IP, UDP. Network security issues, Programming exercises or projects involving implementation of protocols at different layers. # **Digital Logic & Computer Architecture** Logic design of Digital Systems, Fundamental and advanced concepts of Logic Designs, Boolean Algebra & functions, Designing and implementation of combinational and Sequential logic, minimization techniques, number representation and basic binary arithmetic Logic families and digital integrated circuits, use of CAD tools for logic designs. Topics of Computer Architecture. # **Data Structures & Algorithms** Basic database concepts; Entity Relationship modeling, Relational data model and
algebra, Structured Query Language, RDBMS, Database design, functional dependencies and normal forms, Transaction processing and optimization concepts, concurrency control and recovery techniques, Database recovery techniques, Database security and authorization, Small Group Project implementing a database, Physical database design. Storage and file structure, indexed files, hashed files, signature files, b-trees, files with dense index, file with variable length records, database efficiency and tuning. # **Operating Systems** History and Goals, Evolution of multi-user systems, Process and CPU management, Multithreading, Kernel and User Modes, Protection, Problems of cooperative processes, Synchronization, Deadlocks, Memory management and virtual memory, Relocation, External Fragmentation, Paging and Demand Paging., condary storage, Security and Protection. File systems, I/O systems, Introduction to distributed operating systems. Scheduling, dispatch and Introduction to concurrency. #### **PAPER-II** # Theory of Automata and Formal Languages. Site State Models: Language definitions preliminaries, Regular expressions/ regular languages, finite automatas (FAs), transition graphs (TGs), NFAs, Kleene's theorem, transducers (automata with output), Pumping lemma and non regular language Grammars and PDA: Context free grammars, Derivations, derivation trees and ambiguity, Simplifying CFLs, Normal form grammars and parsing, Push-down Automata, Pumping lemma and non-context free languages, Decidability. Chomsky's hierarchy of grammars, Turing Machines Theory: Turing machines, Post machine, Variations on IM, IM encoding, Universal Turing Machine, Context sensitive Grammars, Defining Computers by TM # **Compiler Theory & Design** Compiler techniques and methodology. Organization of compilers. Lexical and syntax analysis. Parsing techniques. Object code generation and optimization, detection and recovery from errors. Comparison between compilers and interpreters. #### **Numerical Methods** Mathematical Preliminaries, Solution of Equations in one variable, Interpolation and Polynomial Approximation, Numerical Differentiation and Integration, Initial Value Problems for Ordinary Differential Equations, Direct Methods for Solving Linear Systems, Iterative Techniques in Matrix Algebra, Solution of non-linear equations, Approximation Theory, Eigenvalues and Eigenvector computation. #### **Data Base Systems** Basic database concepts, Entity Relationship modelling, Relational data model and algebra, Structured Query language, RDBMS; Database design, functional dependencies and normal forms, Transaction processing and optimization concepts, concurrency control and recovery techniques, Database recovery techniques. Database security and authorization. Small Group Project implementing a database. Physical database design: Storage and file structure, indexed files, hashed files, signature files, b-trees, files with dense index, files with variable length records, database efficiency and tuning Data Warehousing and Data Mining, Emerging Database Technologies and Applications. #### **Software Engineering** Software Engineering, Process Models, Software verification and validation. Techniques are introduced to evaluate software correctness, efficiency, performance and reliability, integration of these techniques into a verification and validation plan. Technical reviews, software testing, programme verification, prototyping and requirement tracing. Attitude of industry toward reliability and performance. # **Artificial Intelligence** Introduction to Common Lisp. AI classical systems: General Problem Solver, rules, simple search, means ends analysis. EIIZA, pattern matching, rule based translators, OPS-5. Knowledge Representation: Natural language, rules, productions, predicate logic, semantic networks, frames, objects, scripts. Searching, Depth first search, breadth first search, best first search, hill climbing, min-max search. Symbolic Mathematics: student solving algebra problems, translating English equations, solving algebraic equations, simplification rules, rewrite rules, meta-rules, Macsyma, PRESS, ATLAS. Logic Programming: Resolution, unification, horn clause logic, Prolog, Prolog programming. Sample case studies of shells and Knowledge Based Systems. A brief appreciation of state of the art computational techniques like neural networks, genetic algorithm, fuzzy sets. # **Computer Graphics** Graphics hardware, Fundamental algorithms, Applications of graphics. Interactive graphics programming -graph plotting, windows and clipping and segmentation. Programming raster display systems, panning and zooming. Raster algorithms and software Scan-Converting lines, characters and circles. Region filling and clipping. Two and three dimensional imaging geometry and transformations. Curve and surface design, rendering, shading, colour and animation #### **ENIVRONMENTAL SCIENCE** #### **PAPER-I** **Life Sciences** (Basic Biology and Natural Resources) # **Basic Biology** Introduction to biology, branches, scope and importance from environmental point of view. What is life? The evolution of life on earth: Origin of life Microbes, Plants and Animals, fossils and sediments distribution and pattern of life in past, Paleontological evidences, Mass extinction. Life forms on Earth (all forms of plants and animals). Life in Water, Life on Land, Microbial life in air water and soils, microbes and diseases, decomposing soil microbes, marine biology Taxonomic principles. History, aims, objectives, hierarchy and kingdoms, identification and nomenclature Classification of plants and animals based on form-relationship, species concept, organization of living things, microbial classification, Ecological Classification Systems, Collection and Herbarium, Preservation, flora, fauna, preservation of insects Ecological adaptation under various environmental conditions, Hydrophytes, Xerophytes. Halophytes, Mesophytes, Epiphytes Distribution of life on earth and factors responsible for present day distribution. Continental drift. #### **Natural Resources** Introduction, scope and importance of natural resources, biotic and abiotic resources Renewable and non-renewable natural resources and their limitations Renewable resources: Forest and wildlife resources, forest wealth of India, animal resources, livestock and fisheries Food Resources: World food problems, agricultural resources, agricultural potential of India, effects of modern agriculture. Non-renewable resources: Fossil fuels- coal, oil and natural gas, Consequences of rapid consumption of fossil fuels. Fresh and marine Water resources: global distribution of fresh water and its limits, The sources of fresh water for terrestrial life, fresh water resources of India, mans water requirement, floods and droughts. Soil and Mineral resources: global status, mineral resources of India, metals and minerals. Energy resources: Global energy consumption, energy needs, conventional and non-conventional energy sources, alternative energy sources, energy resources of India. #### PAPER-II #### **Earth Sciences** # **Environmental Chemistry and Basic Geosciences** # **Environmental Chemistry** Chemistry of atmosphere, Chemical reactions involved in atmosphere, chemistry in ozone depletion, chemical reactions of global warming Chemistry of water, unusual physical properties, changes in water properties by addition of solute, hydrogen bonding, gases present in water, basic reversible and irreversible reactions in water, sources of cations and anions in water, changes in water properties by addition of solute Stichiometry, Gibb's energy, chemical potential, chemical equilibria, acid-base reactions, solubility product, carbonate system Chemistry of carcinogenic compounds and their effects on human body Surfactants: Cationic, anionic and non-ionic detergents, modified detergents. Pesticides: Classification, degradation, analysis, pollution due to pesticides and DDT problems Lead and its compounds: Physical and chemical Properties, behaviour, human exposure, absorption. influence. Mercury and its compounds: Physical and chemical Properties, behaviour, human exposure, absorption, influence. Hydrocarbons Chemistry of hydrocarbon decay, environmental effects, effects on macro and micro organism. Destruction of some hazardous substances: acid halide, anhydrides, cyanides and cyanogens bromides, chromium, aflotoxins, halogenated compounds #### **Basic Geosciences** Atmosphere: Evolution, structure and chemical composition of atmosphere Temperature measurement and controls, Environmental lapse rate, dry and wet adiabatic lapse rate, inversion of temperature and atmospheric stability. Atmospheric pressure and winds, factors affecting on wind, Forms of condensation, precipitation, hydrological cycle Internal structure of earth, Geological evolution, plate tectonic, formation of lithosphere, Continental and oceanic crust formation Types of rocks, Rock cycle, basic minerals of rock, clay minerals, mineral chemistry. Soil and its formation, weathering processes, soil profiles, physical and chemical properties of soil, composition of soil, Macro and micro plant nutrients in soil, Soil classification, Soils of India. # "ANNEXURE B" SYLLABUS AND SCHEME OF EXAMINATION RANGE OFFICER GRADE-I (WILDLIFE) The examination shall be conducted in the following order:- - i. Written Test; - ii. Viva Voce Test; - iii. Walking Test; - iv. Medical Test. # I. Written Test:- #### Main examination (Essay type) There will be four subjects in the Main examination. The time allowed for each paper shall be three hours. The paper wise marks for written examination and viva voce is as under:- | <u>Compulsory Subjects</u> | | <u>Maximum Marks</u> | |--|-----------------------------------|----------------------| | 1. | General English | 100 | | 2. | An essay to be written in English | 100 | | 3. | General Knowledge | 200 |
| Optional Subject (Any one of the following | | | # subjects) - 1. Biology - 2. Silviculture 200 The candidates must obtain minimum of 40% marks in each of the optional subject/ paper, 25% marks in General Knowledge/ General Studies and 33% marks in General English to qualify the written test. #### II. Viva Voce:- The candidate will be interviewed by a panel of Members of the Commission who will have before them a record of his/her career. The viva voce test shall carry 100 marks. Total Marks (Written + viva voce) :- 700 # III. Walking Test:- The date and time for the walking test will be intimated to the eligible candidates. # IV. Medical Test:- The successful candidates will be required to undergo a medical test before the Medical Board. The candidates shall have to pay fee to the Medical Board as may be prescribed for the said Medical examination. # NOTE: a/ Instructions to appear before the Medical Board shall not be understood to mean that a candidate, if found fit, will necessarily be selected and appointed. Summoning of candidates for medical examination conveys no assurance what so ever that they will be selected or appointed. An appointment order or selected candidate will be issued by the Government in accordance with the availability of vacancies. # Syllabus for the written examination # a. **Compulsory subjects** #### 1. General English This paper will be of 10+2 standard and shall consist of a short essay, comprehension, precis writing, usage and vocabulary. #### 2. Essay in English One essay to be written on a topic out of given topics in the paper. The essay will be of 10+2 standard. #### 3. General Knowledge This paper will contain questions on Elementary Science, Geography, Environment/ Forest/ Wildlife conservation and current events etc. # Optional papers/ subjects The candidate may choose only one paper from amongst the two optional papers/ subjects. The scope of the syllabus will be broadly of bachelor's degree level. # b. Syllabus of Optional Papers/ Subjects # (i) Biology # 1. Microbes and Microbiology - 1.1 General account of viruses, Mycoplasma and Cynaobacteria. - 1.2 Bacteria-Structure, Nutrition and reproduction (A general account with broad classification). - 1.3 Economic importance of Bacteria; Bacteria as indicators of pollution; bacteria in industry and agriculture. - 1.4 Microbiology of air, water, soil and food materials. # 2. Algae - 2.1 General characteristic and classification of algae (Fritsch 1935, 1945). - 2.2 Important features of Chlorophyceae and Xanthophyceae, life histories of Chamydomonas, Volvox, Oedogonium, Coleochaete, Chara and Vaucheria. - 2.3 Important features of Phaephyceae and Rhodophyceae, Life histories of Ectocarpus, Sargassum and Polysiphonia. - 2.4 Economic importance of algae-algae as food, feed and source of fibre; algae as indicators of pollution; algae blooms; algae toxins; algae in industry. #### 3. Fungi 3.1 General characteristics and classification of fungi Ainsworth (1971). Exonomic importance of fungi, General account of Lichens. - 3.2 Important features of Mastigomycotina; Life histories of Phythium and Allomyces. - 3.3 Important characteristics of Zygomycotina and Ascomycotina; Life history of Mucor, Saccharomyces, Eurotium and Peziza. 3.4 Important characteristics of Basidiomycotina and Deuteromycotina; life histories of Puccinia, Agaricus, Collectotrichum and Cercopora. #### 4. Bryophytes 4.1 General characteristics, classification (Smith, 1955) and Alternation of Generations in Bryophytes. - 4.2 Structure and reproduction in hepaticeal with reference to Marchantia. - 4.3 Structure and reproduction in Anthocerotales and Musci with reference to Anthoceros and Funaria. - 4.4 Importance of bryophytes in preventing soil erosion; management of forest floors; monitoring and controlling pollution; geobotanical prospecting; in horticulture and as source of antibiotics. ### 5. Pteridophytes - 5.1 General characteristics, classification (Sporne 1975) and origin of pteridophytes (the first vascular - plants); stellar system and alternation of generations in pteridophytes. - 5.2 Important characteristics of Psilopsida and Lycopsida; structure and reproduction in Psilotum, Rhynia, Lycopodium and Selaginella. - 5.3 Important characteristics of sphenopsida, structure and reproduction in Equisetum. - 5.4 Important characteristics of pteropsida, strucrure and reproduction in pteris and Marsilea. #### 6. Cell Structure - 6.1 Cell wall; Primary cell wall, its structure, formation and function. - 6.2 Plasma membrane; The bilayer lipid structure fluid mosaic model, its functions. - 6.3 Cell organelles; structure and functions of E.R. Golgi bodies, Plastids and mitochondria. - 6.4 Ultra-structure of nuclear membrane. Nucleolus: Organization and function. #### 7. Seed Plants-origin evolution and characteristics - 7.1 Characteristics of seed plants; evolution of seed habit seed plants with and without fruit. - 7.2 Geological time scale; fossilization process and types; age of fossils and their importance. - 7.3 General characteristics of gymnosperms; classification of gymnosperms by coulter and chamberlain. - 7.4 Evolution and diversity of gymnosperms. #### 8. Morphology and Reproduction in Gymnosperms - 8.1 Morphology, anatomy, reproduction and life cycle in Cycas. - 8.2 Morphology, anatomy, reproduction and life cycle in cedrus. - 8.3 Morphology, anatomy, reproduction and life cycle in Ephedra. - 8.4 Fossil gymnosperms: Bennititales-History #### 9. Classification and tools in angiosperm taxonomy - 9.1 Salient features of the classification of Bentham and Hooker, merits and demerits. - 9.2 Salient features of the classification of Engler and Prantil; merits and demerits. - 9.3 Contribution of cytology to taxonomy. - 9.4 Contribution of phytochemistry and taximetrics to taxonomy. #### 10. Diversity of angiosperms - 10.1 Morphological diversity of families Ranunculaceae, Brassicaceae, Malvaceae and Rutaceae. - 10.2 Morphological diversity of families Fabaceae, Rosaceae, Apiceae and Acanthaceae. - 10.3 Morphological diversity of families Apocyanaceae, Solanaceae, Lamiaceae and Euphorbiaceae. - 10.4 Morphological diversity of families Liliaceae, Amaryllidaceae and Poaceae. # 11. Structure, Development and Reproduction in seed baring plants - 11.1 Basic body plan of a flowering plant; Modular type of growth. - 11.2 Diversity in plant form in annuals, biennials and perennials. - 11.3 Convergence of evolution of tree habit in gymnosperms monocotyledons and dicotyledons. - 11.4 The largest and oldest trees of the world; canopy architecture. #### 12. Root and Shoot - 12.1 Apical merstem of root, its position, structure and derivatives. - 12.2 Structural modifications of root for storage, respiration, reproduction and for interaction with microbes. - 12.3 Apical meristem, its organization and role. - 12.4 Vascularisation of primary shoot in monocotyledons and dicotyledons; formation of internodes; branching pattern; monopodial and sympodial growth. # 13. Secondary and Basic Structure - 13.1 Vascular cambium and derivatives; wood structure in relation to translocation of water and minerals. - 13.2 Growth rings; heart wood, sapwood, role of woody Skelton; structure and functions of secondary phloem; periderm. - 13.3 Leaf, initiation; development, arrangement and diversity in size and shape; senescence and abscission. - 13.4 Internal structure of leaf in relation to photosynthesis and water loss, adaption to water stress. #### 14. Flower - 14.1 Flower: A modified shoot; structure, development, variety and functions of flower. - 14.2 Structure of anther and Pistill: Male gametophyte and female gametophyte. - 14.3 Pollination: Type, attractants and rewards for pollination; Polen-Pistil interaction, self compatibility. - 14.4 Double fertilization: Endosperm-Typescytology and function; formation of fruit. # 15. Units and mechanisms of multiplication - 15.1 Seed formation and its significance. - 15.2 Seed dormancy; Genetic recombination and replenishment through seed. - 15.3 Seed dispersal strategies. - 15.4 Vegetative propagation- grafting, layering, budding and economic aspects. #### 16. Plant and Environment 16.1 Atmosphere-gaseous composition: water-water cycle, its significance, global radiation, photosynthetically active radiation, temperature. - 16.2 Soil structure: soil profiles and development, physio-chemical properties of soil and biotic components. - 16.3 Morphological, anatomical and physiological responses of plants to water (hydrophytes and xerophytes) and salinity. - 16.4 Morphological, anatomical and physiological responses of plants to light (photoperiodism, heliophytes, sciophytes) and temp (thermoperiodically and vernalization). - 16.5 Population ecology, growth curves: Ecotypes and ecads. - 16.6 Community ecology: Community characteristics, frequency, density, cover, life forms, biological spectrum, ecological succession. - 16.7 Ecosystem: structure, abiotic and biotic components, food chain, food web, ecological pyramids and energy flow. - 16.8 Biogeochemical cycles of carbon, nitrogen and phosphorus. #### 17. Natural Resources and Management - 17.1 Biogeographical regions of India. - 17.2 Vegetation types of India; Forests and grasslands. - 17.3 Strategies for environmental Management. - 17.4 Conservation of Natural resources. #### 18. Utilization of plants - 18.1 Food plants: origin of wheat, maize and potato and their cultivation in India. - 18.2 Fibres: cultivation and processing of cotton and jute. - 18.3 Beverages: Botany and processing of tea and coffee. - 18.4 A general account of fire wood and timber sources of Union Territory of J&K and utilization of Bamboos. - 18.5 Medicinal plants of Union Territory of J&K: a general account #### 19. Non Chordata - 19.1 A general survey, classification and relationship of the various phyla. - 19.2 Protozoa: Study of the structure, bionomica and life history of Paramaecium, Monocyotis, malarial - parasite,
Trypanosoma and Leishmania, Locomotion, nutrition and reproduction in Protozoa - 19.3 Porifiera; Canal system, skeleton and reproduction. - 19.4 Coelenterata: Structure and life history of Obelia and Aurelia, polymorphism in Hydrozoa, coral formation, metagenesia, phylogenetic relationship of Cinidaria and Acnidaria - 19.5 Helminths: Structure and life History of Planaria, Fasciola, Taenia and ascaris. Parasitic adaptation, Helminths in relation to man. - 19.6 Annelida: Neries, earth work and leech; coelom and metamerism; modes of life in polychaetes. - 19.7 Arthropoda: Palemon, scorpion, Cockroach, larvel forms and parasitism in Crustace, mouth part vision - and respiration in arthropods, social life and metamorphosis in insects. Importance of Peripatus. - 19.8 Mollusca: Unio Pila, oyster culture and pearl formation, cephalopodes. - 19.9 Echinodermata-General organisation, larval forms and affinities of Echinodermata. #### 20. Chordata 20.1 General organisation and characters, outline classification and interrelationship of protochordata, Pisces, Amphibia, Reptilila, Aves and Mammalia. - 20.2 Neoteny and retrogressive metamorphosis. - 20.3 A general study of comparative account of the various systems of vertebrates. - 20.4 Locomotion; migration and respiration in fishes; structure and affinities of Dipnoi. - 20.5 Origin of Amphibia: distribution, anatomical peculiarities and affinities of Urodela and Apoda. - 20.6 Origin of Reptiles; adaptive radiation in reptiles; 'fossil reptiles; poisonous and non poisonous snakes of India; poison apparatus of snake. - 20.7 Origin of birds: flightless birds, aerial adaptation and migration of birds. - 20.8 Origin of mammals; homologies of ear ossicles in mammals; dentition and skin derivatives of mammals; distribution, structural peculiarities and phylogenetic relations of Prototheria and Methatheria. #### 21. Ethology - 21.1 General survey of Various types of animal behaviour. - 21.2 Role of hormones and pheromones in behaviour - 21.3 Chronobiology; Biological clock, seasonal rhythms, tidal rhythms. - 21.4 Neuro-endocrine control of behaviour. - 21.5 Parasitism, commensalism and host parasite relationship. - 21.6 Parasitic protozoan's helminthis and insects of man and domestic animals. - 21.7 Insect pests of crops and stored products. - 21.8 Beneficial insects. - 21.9 Pisiculture and induced breeding. # (ii)SILVICULRTURE # 1. Principles of Silviculture Definition of Forestry:- Stages of forestry development and its influence of forestry today. Definition of silvics and silviculture role of silviculture. Major forest types, distribution and composition in India and I&K. Study of site factors like climatic, edaphic, physiographic and biotic in relation to forest. Classification of climatic factors, the role played by light, temperature, rainfall, snow, wind, humidity and evaporation in relation to forest vegetation. Edaphic factors of biological agencies parent rock topography etc. on the soil formation. Soil profiles-physical and chemical properties, mineral nutrients, nutrient cyclying, soil moisture and their influences on forest production. The growth photosynthesis biotic factor-influence of plants, insects, wild animals man and domestic animals on vegetation. Tree growth photosynthesis, respiration, translocation and transpiration. Cambial development, growth rings, effects on environment on cambial development. Shoot and drown development, flowing, fruiting and seed production. Root growth-distribution and biomass. Environmental effects on development silvicultural manipulation of root growth. Stand dynamics-plant succession, competition and tolerance stand development- basal area and yield table. # 2. **Principles of Silviculture** Classification of forests: Forest regeneration, natural, artificial (Plantation forests) and mixed regeneration. Natural forest types and their management. Plantation forests: planting survey, planting plan, plantation records, maps, ecological aspects for the choice of trees species, site preparation, planting tools and planting direct seeding gap filling, afforestation of dryland, wetland and adverse sites and taungya. Enrichment planting; fertilizer, application, nursery crops, cover crops. Tending; control of climbers and undesirable trees. Weed Management. Pruning and lopping. Thinning- thinning of irregular crops, increment felling, improvement felling. Fire prescribed burning. Conflicts between afforestation and cattle ranching. #### 3. Silviculture of trees and shrubs (Soft wood) The origin, distribution, general description, economic value, Phenology, silviculture characters, regeneration methods, management of soft woods such as Cedrus deodars, cupressus torrulosa, pinus wallichiana; P. roxiburghii, P. helpenusis, P. gerardiana, Abies Pindrow, Picca Smethana and Tropical Pines like P. oocarpa, P. petula, P. inesia Rhododendrons, Pyrus passia, and indigofera species, Juniperus, aqathis robusta. # 4. Silvicultural Systems Silvicultural systems:- definition modern silviculture, classical silviculture, classification and detailed study of the following systems. Clear felling system (including clear strip and alternate strip system): shelter wood system; uniform system, the group system the ship shelter wood system; the wedge system; the irregular shelter wood system; the coppice of two rotation system; the shelter wood coppice system; coppice selection system; coppice with standard system; coppice with reserve system; pollard system and culm selection system in bamboo. # 5. Silviculture of Indian trees-II General description, growth and silviculture characters and regeneration methods of following species:- Quercus species, Alus nitida, Acer Spp. Acacia nilotica, A catechu, Dalbergia Sisso, Juglans regia. Toona Ciliata Bauhinia Variegata, Fraxinus spp. Celtis australis, Grewia optiva, morus species, platinus orientalis, Eucalyptus spp, populous spp. Salix species, Robinea pseudoacacia, ulmus wallichiana, catalpa bigninoides, Albizziz spp Dondonaea viscose, parrotia spp. Viburnum, olea cuspidate, Aesculus indica, Ailanthus excelsa; Tectona grandis, shorea robusta Berberis spp. Prosopis spp Leucaena leucocephala, Hippophae rhamanoidls.